Answer Sheet

Chapter-1 knowing Our Numbers

Exercise = 1.1 (i) 16+(-9)=16-9=71. (ii) (-17)+10=-17+10=-7(iii) (-8)+(-24)=(-8)+(-24)=-32(iv) (-33)+48=48-33=15(v) 54 + (-27) = 54 - 27 = 27(vi) (-49) + -37 = -862. (i) (-42) - 28 = -70(ii) 42 - 36 = 6(iv) (-34) - (-66) = -34 + 66 = 32(iii) (-53) - (-37) = -53 + 37 = -16(vi) (-240) - (-153) = -240 + 153 = -87(v) 0-318=0(i) > (ii) > (iii) < (iv) < (v) > (vi) > (vii) > (viii) >3. 4. (i) -12 < 0 < 12 < 21(ii) -5 < -4 < 2 < 3(iii) -13 < -7 < -1 < 3(iv) -15 < -9 < -5 < 5(vi) -9 < -4 < -3 < 3(v) -10 < 0 < 6 < 105. (i) -12 (ii) 6 (iii) 1 (iv) -3 (v) -1 (vi) 1 (i) -(-9)=9(ii) -(+9) = -9(iii) +(-9) = -96. (iv) -|-9|=-9(v) |-12|=12(vi) | 20 |= 20 (vii) - |4| = -4(viii) |6-2|=47. (i) - 7(ii) - 10(iii) 08. (i) -4 (Commutative property of addition) (ii) 0(Additive Identity) (iii) 0 Additive Identity) (iv) -5 (Associativity of Addition) (v) -50 (Associativity of Addition) (vi) 0(Additive identity) (vii) 0(Additive inverse) (viii) 5 (Additive inverse) (-5) 9. -23 + x = -9, x = -9 + 23, x = +1410. The sum of two integers = 65If one integers = -35The other integers = x + (-35) = 65x = 65 + 35, x = 10011. 36 - (-64) - (-64) - 36=(36+64)-(-64-36)=100+100=200**12.** (25)+(-5)+(-10)+15+10= 25 - 5 - 10 + 15 + 10, = 20 + 5 + 10, = 25 + 10 = 3513. and 14. Do your self **Exercise** = 1.21. (i) $(-12) \times (-40) = 480$ (ii) $(-161) \times (-1) = 161$

(iii) $(-10) \times 5 \times (-2) = 100$ (iv) $4 \times (-4) \times 0 \times -9 = 0$ (v) $100 \times (-1) \times (-3) = 300$ (vi) $(-3) \times (-2) \times (-5) \times (-2) = 60$ 2. (i) $26 \times (-48) + (-48) \times (-36)$ $= -48[26 + (-36)] = -48 \times (-10) = 480$

(1)

(ii)
$$8 \times 53 \times (-125) = [8 \times (-125)] \times 53$$

 $= -1000 \times 53 = -53,000$
(iii) $(-17) \times (-29) = -17 \times (-30 - 1)$
 $= (-510) - (-17) = 493$
(iv) $(-41) \times 102 = (-41) \times (100 + 2)$
 $= -4100 - 82 = -4182$
(v) $-1 \times [50 - 2] = (-50) + 2 = -48$
3. (i) $-2(Commutative property for multiplication)$
(ii) $-5(Associative property of multiplication)$
(iii) $-4(Distributive property for multiplication)$
(iv) $-4(Commutative property of multiplication)$
(vi) $-23(Commutative property of multiplication)$
4. (i) $10\times[8 - (-3)] = 10 \times 8 - 10 \times (-3)$
 $= 10 \times 8 - 10 \times (-3) = 10 \times 8 - 10 \times (-3)$
 $= 80 + 30 = 80 + 30, 110 = 110$
(ii) $(-25) \times [(-9 - (-4) = (-25) \times (-9) - (-25) \times (-4))$
 $(-25) \times (-9) - (-25) \times (-4) = (-25) \times (-9) - (-25) \times (-4))$
 $(-25) \times (-9) - (-25) \times (-4) = (-25) \times (-9) - (-25) \times (-4))$
 $(-25) \times (-9) - (-25) \times (-4) = (-25) \times (-9) - (-25) \times (-4))$
 $(-25) \times (-9) - (-25) \times (-4) = (-25) \times (-9) - (-25) \times (-4))$
 $(-25) \times (-9) - (-25) \times (-4) = (-25) \times (-9) - (-25) \times (-4))$
 $(-40) \times [43 + (-3)] = [(-40) \times 43] + [(-40) \times (-3)]$
 $-1720 + 120 = -1720 + 120$
 $1600 = 1600$
5. (i) $+ve$ (ii) $-ve$
6. (i) $5 \times [(-4) - x] = 5 \times (-4) - 5 \times 10$
 $5 \times (-4) - 5 \times (-x) = 5 \times (-4) - 5 \times 10$
 $5 \times (-4) - 5 \times (-x) = 5 \times (-4) - 5 \times 10$
 $5 \times (-4) - 5 \times (-x) = 50$
 $-20 - 5 \times (x) = 70$
 $So, -5 \times (-x) = 50$
 $-x = \frac{50}{-5} = -10$
 $-x = -10$
(ii) $2 \times (3 + x) = 2 \times 3 + 6 \times 2$
 $(2 \times 3) + (2 \times x) = (2 \times 3) + (6 \times 2)$
 $6 + 2 \times x = 6 + 12$
 $So, 2x = 12$
 $x = \frac{12}{2}$
 $x = \frac{12}{6}$
 $x = 6$

- 7. (i) 22, (ii) – 37, (iii) 0, (iv) 11
- 8. Do it yourself.
- 9. The company sells white cement bags = 3000
 - (i) The company earns profit of white cement bags = $3,000 \times ₹ 8$ =₹24,000 The company sold grey cement bags = 5,000The company earns loss on gray cement bags = $5,000 \times 5$ =₹25,000 So, ₹ 24,000 < ₹ 25,000 So, ₹25,000-₹24,000=₹1,000 Thus, the loss of company ₹ 1,000 profit = $\frac{32,000}{8}$ = 4,000 (ii) 6,400×5=₹32,000

Thus, the number of white cement bags is 4,000.

Exercise = 1.3

1.	(i) (-30)÷10	(ii) 50÷-	-5 = -10
	(iii) $(-36) \div (-9) = 4$	(iv) 13÷[$(-2)+1], 13 \div 1=13$
	(v) $(-31) \div (-31) + (-1)$	$1)] = (-31) \div (-31) = 0$	
	(vi) $[(-6)+5] \div [(-2)+1]$	$ =-1 \div -1=0$	
2.	(i) $235 \div (-1) = -235$	(ii) $-73 \div -1 = 73$	(iii) 0
	(iv) -1	(v) 68	(vi) 7
3.	(i) False (ii) False (iii) T	True (iv) False (v) True (v	i) False
4.	(i) $a = 12, b = -4, c = 2$		
	$a \div (b + c) \neq (a \div b)$	$)+(a \div c)$	
	$12 \div (-4+2) \neq (12 \div)$	$(-4)+12 (12 \div 2)$	
	$12 \div (-2) \neq -3 + $	6	
	$-6 \neq 3$		
	(ii) $a \div (b+c) \neq (a \div b) +$	$(a \div c)$	
	$(-10) \div (1+1) \neq [(-1))$	$0) \div 1] + [(-10) \div 1]$	
	$(-10) \div 2 \neq (-10)$	$(\div 1) + (-10 \div 1)$	
	-5 = -10		
5.	(i) $6 \div (-2) = (-3)$	(ii) $15 \div (-5) = -3$	(iii) $18 \div (-6) = -3$
	(iv) $12 \div (4) = -3$	(v) $21 \div (-7) = -3$	

Exercise = 1.4

1. (i)
$$3 \times 4 + 14 \div 2$$

= $3 \times 4 + 7 = 12 + 7 = 19$
(ii) $14 - 10 \div 2 + 6 \times 3$
= $14 - 5 + 6 \times 3 = 14 - 5 + 6 \times 3$
= $14 - 15 + 18 = 9 + 18 = 27$

(iii)
$$23+27 \div (4+5)-5 \times 6$$

= $23+27 \div 9-5 \times 6= 23+3-5 \times 6$
= $23+3-30=26-30=-4$
(iv) $(20-2) \div (5-7)$

$$=18 \div -2 = -9$$

(v), (vi), (vii) and (viii) similar as (i) to (iv). So, do your self.

2. (i)
$$12 - [7 - \{16 - (18 - \overline{6+3} - 1)\}]$$

= $12 - [7 - \{16 - (18 - 8)\}] = 12 - [7 - \{16 - 10\}]$
= $12 - [7 - 6]$, = $12 - 1 = 11$
(ii) $75 - \{35 \times 2 - (14 \times 4 + 6)\}$, $75 - \{35 \times 2 - 62\}$

$$= 12 - [7 - 6], = 12 - 1 = 1$$

(ii)
$$75 - \{35 \times 2 - (14 \times 4 + 6)\}, 75 - \{35 \times 2 - 62\}$$

= $75 - \{70 - 62\}, 75 - 8 = 67$

(iii)
$$15+3\times 3-[14-2-2\{9-7-9-4\}]$$

= $15+3\times 3-[14-2-\{9-7-5\}]$
= $15+3\times 3-[14-2-\{9-2\}]$
= $15+3\times 3-[14-2-7]=15+3\times 3-[14-9]$
= $15+3\times 3-5=15+9-5=15+4=19$
(iv) $12+5-[9-\{6\div 2-(6-12\div 3)\div 2\}]-5$
= $12+5-[9-\{6\div 2-(6-4)\div 2\}]-5$

$$= 12 + 5 - [9 - \{6 \div 2 - 2 \div 2\}] - 5$$

$$= 12 + 5[9 - {3 - 1}] - 5 = 12 + 5 - [9 - 2] - 5$$
$$= 12 + 5 - 7 - 5 = 17 - 12 = 5$$

(v), (vi), (vii) and (viii) similar as (i) to (iv) So, do your self.

Objective Type Questions

1. (ii), 2. (iii), 3. (iv), 4. (iv), 5. (i), 6. (ii), 7. (ii), 8. (i), 9. (ii), 10. (ii)

Fill in the blanks

1. Zero, 2. Commutative, associative, 3. 0, 4. Positive, 5. division

True/False

1. False 2. True, 3. True, 4. False, 5. True

Chapter Assessment

- 1. (i) 190, (ii) -11(iii) -504, (iv) -100(v) 210(vi) + 1(vii) 2(viii) 5
- (i) 0(ii) 2(iii) 10(iv) 82.

3. (i)
$$12(ii) - 12(iii) - \frac{1}{10}(iv) 9(v) 3(vi) 15$$

4. (i)
$$1(ii) - \frac{1}{8}(iii) - \frac{1}{10}(iv) \frac{1}{12}$$

- **5.** (i) –11(ii) 13(iii) 22
- (i) -480(ii) -15,600(iii) 500(iv) 0(v) 3,774(vi) 1,764 7.
- (i) < (ii) = (iii) < (iv) > (v) = (vi) <8.
- 9. 1,660 m **10.** Integer c by -10 km from A
- 11. 358

Chapter-2 Fractions

Ex	ercise = 2.1
1.	(i) $\frac{3}{5}$ and $\frac{4}{3} = \frac{3}{5} < \frac{4}{3}$ (ii) $\frac{6}{7} < \frac{7}{6}$
	(iii) $\frac{21}{5} < \frac{18}{4}$ (iv) $\frac{7}{15} > \frac{9}{20}$
2.	(i) $\frac{5}{14} < \frac{8}{21} < \frac{4}{7} < \frac{2}{3}$ (ii) $\frac{13}{24} < \frac{7}{10} < \frac{3}{4} < \frac{7}{8}$
3.	(i) $\frac{17}{20} > \frac{4}{5} > \frac{11}{15} > \frac{7}{10}$ (ii) $\frac{9}{14} > \frac{13}{28} > \frac{11}{35} > \frac{2}{7}$
4.	(i) $\frac{48}{72} = \frac{2}{3}$ (ii) $\frac{276}{115} = \frac{12}{5}$
	(iii) $\frac{72}{336} = \frac{3}{14}$ (iv) $\frac{18}{81} = \frac{2}{9}$
5.	(i) $\frac{18}{24}, \frac{20}{24}, \frac{21}{25}$ (ii) $\frac{56}{200}, \frac{180}{200}, \frac{95}{200}$
6.	(i) $4 + \frac{7}{8} = \frac{4}{1} + \frac{7}{8} = \frac{4 \times 8}{1 \times 8} = \frac{32}{8} = \frac{32 + 7}{8} = \frac{39}{8}$
	(ii) $2\frac{2}{3} + 3\frac{1}{2} = \frac{8}{3} + \frac{7}{2} = \frac{8 \times 2}{3 \times 2} = \frac{16}{6} = \frac{7 \times 3}{2 \times 3} = \frac{21}{6}$
	5 2 5 2 5 2 6 2 7 5 6
	$=\frac{16+21}{6}=\frac{37}{6}$
	(iii) $\frac{7}{10} + \frac{2}{5} + \frac{3}{2} = \frac{7+4+15}{10} = \frac{26}{10} = \frac{13}{5}$
	(iv) $5 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{60 + 6 + 4 + 3}{12} = \frac{73}{12}$
7.	(i) $\frac{3}{8} - \frac{1}{8} = \frac{3-1}{8} = \frac{2}{8} = \frac{1}{4}$
	(ii) $\frac{7}{12} - \frac{3}{12} = \frac{7-3}{12} = \frac{4}{12} = \frac{1}{3}$
	(iii) $\frac{47}{11} - \frac{25}{11} = \frac{47 - 25}{11} = \frac{22}{11} = 2$
	(iv) $7\frac{1}{6} - 2\frac{3}{42} = \frac{43}{6} - \frac{87}{42} = \frac{301 - 87}{42} = \frac{214}{42} = 5\frac{2}{21}$
8.	(i) $\frac{2}{3} + \frac{5}{6} - \frac{1}{9} = \left(\frac{2}{3} + \frac{5}{6}\right) - \frac{1}{9} = \left(\frac{4+5}{6}\right) - \frac{1}{9} = \frac{9}{6} - \frac{1}{9}$
	$=\frac{27-18}{18}=\frac{9}{18}=\frac{1}{2}$
	10 10 2
	(ii) $8-4\frac{1}{2}-2\frac{1}{4}=\frac{8}{1}-\frac{9}{2}-\frac{9}{4}=\left(\frac{8}{1}-\frac{9}{2}\right)-\frac{9}{4}$
	$=\left(\frac{16-9}{2}\right) - \frac{9}{4} = \frac{7}{2} - \frac{9}{4} = \frac{14-9}{4} = \frac{5}{4}$

(iii)
$$8\frac{5}{6} - 3\frac{5}{8} + 1\frac{7}{12} = \frac{53}{6} - \frac{27}{8} + \frac{19}{12}$$

 $= \left(\frac{53}{6} - \frac{27}{8}\right) + \frac{19}{12} = \left(\frac{212 - 81}{24}\right) + \frac{19}{12} = \frac{131}{24} + \frac{19}{12}$
 $= \frac{131}{24} + \frac{19}{12} = \frac{131 - 38}{24} = \frac{93}{24} = 3\frac{21}{24}$
9. $17\frac{3}{4} - 11\frac{2}{3} = \frac{71}{4} - \frac{35}{3} = \frac{213 - 140}{12} = \frac{73}{12} = 6\frac{1}{12}$
10. The length of a rectangular sheet $= 15\frac{3}{4}$ cm
The breadth of a rectangular sheet $= 12\frac{1}{2}$ cm
Thus, the perameteter of a rectangular sheet
 $= 2$ (length + breadths) $= 2\times\left(15\frac{3}{4} + 12\frac{1}{2}\right)$
 $= 2\times\left(\frac{63}{4} + \frac{25}{2}\right) = 2\times\left(\frac{63 + 50}{4}\right) = 2\times\frac{113}{4} = \frac{1}{2}\times\frac{113}{4} = \frac{226}{4} = \frac{113}{2} = 56\frac{1}{2}$
11. Adarsh finished colouring a picture $= \frac{7}{12}$
Aadesh finished colouring a picture $= \frac{3}{4}$
Worked longer $= \frac{3}{4} - \frac{7}{12} = \frac{9 - 7}{12} = \frac{2}{12} = \frac{1}{6}$
So, Aadesh finished colouring a picture in longer time $= \frac{1}{6}$ cm
12. Sanchi studes daily $= 5\frac{2}{3}$ hours
He devotes time for other subject $= 5\frac{2}{3} - 2\frac{4}{5}$
 $= \frac{17}{3} - \frac{14}{5} = \frac{85 - 42}{15} = \frac{43}{15} = 2\frac{13}{15}$ hours.
13. The cost of mathematics book $= 225\frac{3}{4}$
The total cost of both books $= 25\frac{3}{4} + 20\frac{1}{2}$
 $= \frac{103}{4} + \frac{41}{2} = \frac{103 + 82}{4} = \frac{185}{4} = 6\frac{1}{4}$
14 and 15 came as 12 sugartion S a do your self

14. and 15. same as 12 question. So, do your self

Exercise = 2.2

1.	(i) c	1	(ii) c	(iii) b	(iv) a
2.	Do yo	ur self			
3.	(i) =	$\frac{7}{3} \times \frac{1}{49} = \frac{7 \times 1}{3 \times 49} =$	$\frac{7}{147} = \frac{1}{21}$	(ii) $\frac{7}{9} \times \frac{15}{28} = \frac{7 \times 5}{9 \times 28}$	$=\frac{35}{252}=\frac{5}{36}$
	(iii) 5	$5\frac{3}{6} \times 2\frac{2}{11} = \frac{33}{6} \times \frac{2}{11}$	$\frac{24}{1} = \frac{33 \times 24}{6 \times 11} = \frac{792}{66} =$	$\frac{72}{11} = 6\frac{6}{11}$	
	(iv) 7	$7\frac{1}{9} \times 3\frac{2}{16} = \frac{64}{9} \times \frac{1}{9}$	$\frac{50}{16} = \frac{64 \times 50}{9 \times 16} = \frac{3,200}{144}$	$=22\frac{32}{144}$	
4.	(i) 9	$9 \times \frac{3}{7} = \frac{9}{1} \times \frac{3}{7} = \frac{9}{1}$		(ii) $3 \times \frac{4}{15} = \frac{3}{1} \times \frac{4}{15} =$	1/15 15 5
		$7 \times \frac{2}{5} = \frac{7}{1} \times \frac{2}{5} = \frac{7}{1} \times \frac{2}{5} = \frac{7}{1} \times \frac{2}{1} \times \frac{2}{1} = \frac{7}{1} \times \frac{2}{1} = \frac{7}{1} \times \frac{2}{1} = \frac{7}{1} \times \frac{2}{1} \times \frac{2}{1} = \frac{7}{1} \times $		(iv) $15 \times \frac{3}{5} = \frac{15}{1} \times \frac{3}{5} =$	$=\frac{15\times3}{1\times5}=\frac{30}{5}=6$
5.		$7 \times \frac{5}{49} = \frac{7}{1} \times \frac{5}{49} =$	$\frac{35}{49} = \frac{5}{7}$	(ii) $5 \times \frac{1}{45} = \frac{5}{1} \times \frac{1}{45} = \frac{5}{1} \times \frac{1}{45} = \frac{5}{1} \times \frac{1}{45} = \frac{5}{1} \times \frac{1}{1} \times \frac{1}{1} = \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} \times \frac{1}{1} = \frac{1}{1} \times \frac$	$=\frac{5}{45}=\frac{1}{9}$
6.	(i) - <u>1</u>	$\frac{1}{10}$ of a rupee	100		
			$e = \frac{100}{10} = 10$ paise		
		of a kg	2 000		
		5	$1000 = \frac{2,000}{5} = 400g$	5	
		$\frac{1}{10}$ of a meter	1 100		
			$\frac{1}{10} \times 100 = \frac{100}{10} = 100$	cm	
	(iv) -	$\frac{3}{5}$ of a litre			
	=	$=\frac{3}{5}$ × 1,000 ml = $\frac{3}{5}$	$\frac{0,000}{5} = 600 \mathrm{ml}.$		
	4	$\frac{1}{2}$ of 6 kg	1		
	1	kg = 1,000 g, 6 kg	$g = 6,000 \text{ g}, \frac{1}{2} \times 6,000 \text{ g}$) g	
		$\frac{6,000}{2} = 3,000 = 3$	kg		
	•	$\frac{4}{5}$ of 700 ml			
	-	$\frac{4}{5} \times 700, \frac{2,800}{5} = 5$	560 ml		
7.	(i)	$\frac{1}{2} \times 4\frac{2}{9} = \frac{1}{2} \times \frac{38}{9} =$	$\frac{38}{18} = \frac{19}{9} = 2\frac{1}{9}$		
			(7)	

(ii)
$$\frac{5}{8} \times 9\frac{2}{3} = \frac{5}{8} \times \frac{29}{3} = \frac{5 \times 29}{8 \times 3} = \frac{145}{24} = 6\frac{1}{24}$$

(iii) $1\frac{2}{3}$ of $\frac{9}{16} = \frac{2}{3} \times \frac{9}{16} = \frac{2 \times 9}{3 \times 16} = \frac{18}{48} = \frac{9}{24} = \frac{3}{8}$
8. $\frac{1}{3}$ of 5 is greater
9. (i) $\frac{10}{27} \times \frac{28}{65} \times \frac{39}{56}$
 $= \left(\frac{10}{27} \times \frac{28}{65}\right) \times \frac{39}{56} = \left(\frac{280}{1,755}\right) \times \frac{39}{56} = \left(\frac{56}{351} \times \frac{39}{56}\right) = \frac{2184}{19656} = \frac{1}{9}$
(ii) $1\frac{4}{7} \times 1\frac{13}{22} \times 1\frac{1}{15} = \frac{11}{7} \times \frac{35}{22} \times \frac{16}{15}$
 $= \left(\frac{11}{7} \times \frac{35}{22}\right) \times \frac{16}{15} = \frac{385}{154} \times \frac{16}{15} = \frac{6160}{2310} = \frac{616}{231} = 2\frac{154}{231}$
(iii) $2\frac{2}{17} \times 7\frac{2}{9} \times 1\frac{33}{52}$
 $= \frac{36}{17} \times \frac{65}{9} \times \frac{85}{52} = \left(\frac{36}{17} \times \frac{65}{9}\right) \times \frac{85}{52} = \frac{2340}{63} \times \frac{85}{52} = \frac{1,98,900}{3,276}$
 $= \frac{49,725}{8+9^{-}} = \frac{16,575}{273} = \frac{5,525}{91} = \frac{425}{13} = 32\frac{9}{13}$

10. Suman can walk in an hour =
$$2\frac{2}{5}$$
 km

He will cover distance in $3\frac{1}{3}$ hour

$$= 2\frac{2}{5} \times 3\frac{1}{3} = \frac{12^4}{5} \times \frac{16^2}{3} = 4 \times 2 = 8 \text{ km}$$

- 11. Sharik made his shots at basket ball practice = $\frac{3}{4}$ of his shots Amrit made the number of shots Sharik made = $\frac{2}{5}$ of the number The fraction of shots did Amrit make = $\frac{3}{4} \times \frac{2}{5} = \frac{3 \times 2}{4 \times 5} = \frac{6^3}{20^{10}} = \frac{3}{10}$
- **12.** The a ere of a square = $4 \times \text{side}$

$$= 4 \times 10\frac{3}{4} = 4 \times \frac{43}{4} = \frac{4}{1} \times \frac{43}{4} = \frac{172}{4} = 43 \text{ m}^2$$

13, 14, 15 and 16 do your self

Exercise = 2.3 1. (i) $\frac{5}{8} = \frac{8}{5}$ (ii) $\frac{10}{11} = \frac{11}{10}$ (iii) $1\frac{1}{4} = \frac{5}{4} = \frac{4}{5}$ (iv) $\frac{1}{9} = 9$ (v) $7 = \frac{1}{7}$ (vi) $5\frac{1}{2} = \frac{11}{2} = \frac{2}{11}$

2. (i)
$$9 + \frac{7}{3} = \frac{9}{1} + \frac{7}{3} = \frac{9}{1} \times \frac{3}{7} = \frac{27}{7} = 3\frac{6}{7}$$
 (ii) $15 + \frac{3}{4} = \frac{15}{1} + \frac{3}{4} = \frac{15}{4} \times \frac{3}{4} = \frac{60}{3} = 20$
(iii) $18 + \frac{6}{7} = \frac{18}{1} + \frac{6}{7} = \frac{18}{18} \times \frac{7}{6} = \frac{126}{16} = 21$ (iv) $3 + 2\frac{1}{3} = \frac{3}{1} + \frac{7}{3} = \frac{3}{1} \times \frac{3}{7} = \frac{7}{7} = 1\frac{2}{7}$
3. (i) $\frac{4}{9} + \frac{2}{3} = \frac{4}{9} \times \frac{3}{2} = \frac{12}{18} = \frac{2}{3}$ (ii) $\frac{3}{7} + \frac{8}{7} - \frac{3}{7} \times \frac{7}{8} = \frac{21}{25} = \frac{3}{8}$
(iii) $2\frac{1}{3} + \frac{3}{5} = \frac{7}{7} + \frac{3}{5} = \frac{7}{7} \times \frac{5}{3} = \frac{35}{9} \cdot \frac{38}{9}$ (iv) $3\frac{1}{2} + \frac{8}{3} = \frac{7}{7} + \frac{8}{3} = \frac{7}{7} \times \frac{8}{3} = \frac{21}{16} = 1\frac{5}{16}$
4. $30\frac{5}{9} + 25 = \frac{275}{9} + \frac{25}{12} = \frac{275}{225} = \frac{212}{225} = \frac{211}{9} = 1\frac{2}{9}$ m
5. $\frac{3}{4} + 7\frac{1}{2} = \frac{3}{4} + \frac{15}{2} = \frac{30}{4} \times \frac{2}{15} = \frac{6}{60} = \frac{1}{10}$
6. $\frac{308}{14} + 1\frac{5}{6} = \frac{308}{1} + \frac{11}{14} = \frac{308}{18} \times \frac{6}{11} = \frac{1.848}{11} = 168$
7. The length of rope = 21 m
The length of one piece cuts from the rope $-3\frac{1}{2}$ m
She got the all pieces of the rope $= 21 + 3\frac{1}{2} = \frac{21}{1} + \frac{7}{2} = \frac{21}{1} \times \frac{2}{7} = \frac{42}{7} = 6$ So. She get 6 pieces
8. Sangini has money = ₹ 52
The price of one chocolate = ₹ 5\frac{1}{5}
She car buy chocolate $= \frac{52}{1} + \frac{25}{26} = \frac{52}{1} \times \frac{5}{26} = \frac{260}{26}$
 $= 10$ chocolate
9. Disha built a tower of blocks $= \frac{2}{3}$ meter tall
The blocks did she use $= \frac{2}{3} + \frac{15}{15} = \frac{2}{3} \times \frac{15}{15} = \frac{3}{3} = 10$ blocks
10. $3\frac{1}{3} + 5\frac{5}{6} = \frac{10}{3} + \frac{35}{6} = \frac{10}{3} \times \frac{5}{35} = \frac{60}{105} = \frac{4}{7}$
11. Do yourself
12. Do yourself
13. (i) 2. (iv) 3. (iii) 4. (iii) 5. (i) 6. (iv) 7. (ii) 8. (iii)
True/False
1. 72. T.3. F 4. T.5. F
Fill in the blanks
1. Proper fraction
2. Whole number, fraction 3. non zero 4. $\frac{6}{7}$ 5. $\frac{1}{2}$

(9)

	Chapter Assessment		
1.	(i) 15	(ii) 3	(iii) 7
2.	(i) $\frac{1}{11} < \frac{3}{11} < \frac{6}{11} < \frac{9}{11}$	(ii) $1\frac{2}{5} < 1\frac{1}{2} < 2\frac{1}{4}$	(iii) $\frac{1}{7} < \frac{3}{7} < \frac{5}{7} < \frac{11}{7}$
3.	(i) $\frac{7}{10} > \frac{3}{7} > \frac{1}{5}$	(ii) $\frac{5}{4} > \frac{7}{8} > \frac{11}{16}$	(iii) $\frac{17}{18} > \frac{15}{16} > \frac{11}{12}$
4.	(i) $1\frac{1}{15}$	(ii) $1\frac{2}{5}$	(iii) $7\frac{7}{10}$
	(iv) $3\frac{4}{9}$	(v) $18\frac{1}{2}$	(vi) $7\frac{1}{5}$
5.	Do your self		

5.Do your set6.(i) 90 minutes(ii) 10 months(iii) 160 m7.(i) $\frac{8}{9}$ (ii) $1\frac{1}{6}$ (iii) $4\frac{2}{7}$ (iv) $10\frac{1}{2}$ 8.(i) $-2\frac{17}{24}$ (ii) $3\frac{39}{40}$ (iii) $11\frac{41}{160}$ (iv) $\frac{71}{72}$ 9. $2\frac{7}{6}$ 10. $6\frac{1}{12}$ 11. $\frac{139}{3}$ cm12. $\frac{2}{5}$, Ritu by $\frac{1}{5}$ part13. (i) 800 (ii) 600(iii) 1,000

Chapter-3 Decimals

Exercise = 3.1

1. (i)
$$4 \times 10 + 6 \times 1 + \left(\frac{1}{10}\right) \times 4 + \left(\frac{1}{1000}\right) \times 3$$

(ii) $2 \times 100 + 3 \times 10 + 1 \times 1 + \left(\frac{1}{10}\right) \times 5 + \left(\frac{1}{100}\right) \times 3$
(iii) $3 \times 100 + 5 \times 10 + \left(\frac{1}{10}\right) \times 8 + \left(\frac{1}{100}\right) \times 6$
(iv) $4 \times 100 + 2 \times 1 + \left(\frac{1}{100}\right) \times 5 + \left(\frac{1}{100}\right) \times 3$
(v) $2 \times 100 + 8 \times 10 + 6 \times 1 + \left(\frac{1}{10}\right) \times 4 + \left(\frac{1}{100}\right) \times 5$
2. (i) $0.6 > 0.06$ (ii) $1.7 < 11.5$ (iii) $1.39 > 1.34$ (iv) $5.05 < 5.50$
3. (i) $>$ (ii) $<$ (iii) $<$ (iv) $>$ (v) $>$ (v) $>$ (iv) $<$
4. (i) $0.25 = \frac{25}{100} = \frac{1}{4}$ (ii) $31.08 = 31 + \frac{8}{100} = 31 + \frac{2}{25} = 31\frac{2}{25}$
(iii) $0.8 = \frac{8}{10} = \frac{4}{5}$ (iv) $0.225 = \frac{225}{1,000} = \frac{9}{40}$
(v) $0.0092 = \frac{92}{10,000} = \frac{23}{2,500}$

5. (i)
$$\frac{3}{25} = \frac{3 \times 4}{25 \times 4} = \frac{12}{100} = 0.12$$
 (ii) $\frac{13}{125} = \frac{13 \times 8}{125 \times 8} = \frac{104}{1,000} = 0.104$
(iii) $\frac{5}{8} = \frac{5 \times 125}{8 \times 125} = \frac{625}{1,000} = 0.625$ (iv) $7\frac{3}{40} = \frac{283}{40} = \frac{283 \times 25}{40 \times 25} = \frac{7.075}{1,000} = 7.075$
(v) $137\frac{13}{625} = \frac{85,638}{625} = \frac{85,638 \times 16}{625 \times 16} = \frac{13,70,208}{10,000} = 137.0208$
6. (i) $3.003 < 3.03 < 3.3 < 3.303 < 33.3$
(ii) $0.07 < 0.7 < 7.07 < 7.7 < 7.77$
7. (i) 7.15 m (ii) 5.175 km (iii) 5.4751 (iv) 171.75 rupee
8. (i) $12.25 + 15.62 + 35.55 = 63.42$
(ii) $326.123 + 210.6 + 632.27 = 1168.993$
(iii) $720.62 + 523.690 + 120.007 = 1364.317$
(iv) $607.12 + 790.657 + 1930.425 = 3328.202$
9. (i) $9.756 - 6.28 = 3.476$ (ii) $48.1 - 0.37 = 47.73$
(iii) $108.032 - 86.8 = 21.52$ (iv) $100 - 26.32 = 73.68$
10. $18.5 - 6.2376 = 12.2624$
11. $17.443 + 29.657 = 47.1, 13.687 + 18.548 = 32.235$
So, $47.1 - 32.235 = 14.865$
12. $42.3 \text{ km} = 28.8 \text{ km} = 13.5 \text{ km}$
13. $60.1 - 32.67 = 27.43$
14. Vishal bought apples = 5 kg 300 g
He bought Mangoes = 3 kg 250 g
He bought total fruits = 5 kg 300 g + 3 by 250 = 8 g 550 g
Vani bought Oranges = 4 kg 800 g
She bought bananas = 4 kg 150 g
She bought total fruits = 4 kg 800 g + 4 kg 150 gm = 8 kg 950 g
Who bought more fruits = ?
Vishal = 8 kg 550 g < Vani = 8 kg 950 g
So, 8 kg 950 - 8 kg 550 g = 400 g

Vani bought 400 g fruits more than Vishal.

15. is similar as 14. so, do your self.

Exercise = 3.2

1.	(i) $5 \cdot 85 \times 10 =$	= 58.5 [shifting the d	lecimal point b	y one place to the	ne right]
	(ii) 0·56×10=	= 5·6 (iii)	0.0326×100	$= 3 \cdot 26$ (iv)	$46 \cdot 964 \times 100 = 4696 \cdot 4$
	(v) 0·006×10	00 = 6 (vi)	$0 \cdot 1 \times 1000 = 1$	00	
2.	(i) 4.5×16	(ii)	0.856×19	(iii)	$29 \cdot 86 \times 53$
	1 6		0.8 5	6	2.9 8 6
	×4.5		\times 1	9	× 5 3
	8 0		0 7 7 0	4	8 9 5 8
	6 4 0		0 8 5 6	0 1	4 9 3 0 0
	7 2.0		1 6.2 6	4 1	5 8 2.5 8

(11)

	(iv) 0.0526×169	(v) 0.379×23	(vi) 13	3·76×123
	0.0 5 2 6	0.3 7 9		1 3.7 6
	$\frac{\times 1 6 9}{4 7 3 4}$	$\frac{\times 2 3}{1 1 3 7}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	4 / 3 4 3 1 5 6 0	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	2	
	0 5 2 6 0 0	$\frac{7 \ 5 \ 8 \ 0}{8 \ 7 \ 1 \ 7}$		
	0 8.8 8 9 4		1 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.	(i) $2 \cdot 08 \times 0 \cdot 03$ (ii) $322 \cdot$	9×2·24 (iii) 2	$20.06 \times 2.06 \qquad (i$	iv) $13 \cdot 01 \times 6 \cdot 02$
		2 2.9	2 0.0 6	1 3.0 1
	$\frac{\times 0.03}{624} \qquad \frac{\times}{12}$	2.2 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\times \ 6.0\ 2}{2\ 6\ 0\ 2}$
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3}{2}$ $\frac{0}{9}$ $\frac{0}{6}$ $\frac{4}{4.1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(v) and (vi) similar as (i) to (iv),	So, Do vour self.		
4.	The area of a rectangle = length	-		
	e e	$1 \times 4.6 \mathrm{cm}31.28 \mathrm{cm}$	m^2	
5.		$= 0.356 \mathrm{kg}$		
		$= 12 \cdot 5 \div 0 \cdot 356 = 4 \cdot 125 $	45 kg	
6.	A two wheeler covers a distance	e in one litre of peti	$rol = 65 \cdot 4 \text{ km}$	
	It will cover distance in 8.5 litre	*		
7.	The cost of one metre cloth = \mathbf{R}	163.30		
	The cost of 11.75 metre cloth =	11·75×163·30=₹	1918.775	
8.	A bag contains rice = $299 \cdot 5 \text{ kg}$			
	The rice contained in 1,000 such	bags = $299 \cdot 5 \times 1$,	$000 = 2,99,500 \mathrm{kg}$	
9.	A taxi driver take charges = $9 \cdot 8$	0 per km		
	He will take charges for a journ	ey of $106 \cdot 5 \text{ km} = 1000 \text{ km}$	06·5×₹9·80=₹1	043.7
F				
LXC	ercise = 3.3			
1.	(i) $44 \cdot 28 \div 10 = \frac{44 \cdot 28}{10} 4 \cdot 428$	[Shifting decimal p	point to the left by	l place]
	(ii) $8 \cdot 78 \div 10 = \frac{8 \cdot 78}{10} = 0 \cdot 878$			
	(iii) $0.02 \div 100 = \frac{0.02}{100} = 0.000$	2 [Shifting decimal	point to the left by	/ 2 place]
	(iv) $0.83 \div 100 = \frac{0.83}{100} = 0.008$			
	100			

(v)
$$587 \cdot 35 \div 100 = \frac{587 \cdot 35}{100} = 5 \cdot 8735$$

(vi) $20 \cdot 01 \div 1,000 = \frac{20 \cdot 01}{1000} = 0.02001$ [Shifting decimal point to the left by 3 place]

(vii)
$$0.83 \div 1000 = \frac{0.83}{1000} = 0.00083$$

2. (i) 7·2+0·9 =
$$\frac{7.2}{0.9} = \frac{7.2 \times 10}{0.9 \times 10} = \frac{72}{9} = 8$$
 (ii) 13·2+1·2= $\frac{13\cdot 2 \times 10}{1\cdot 2 \times 10} = \frac{132}{12} = 11$
(iii) 2·45+0·35 = $\frac{2\cdot45 \times 100}{0.35 \times 100} = \frac{245}{35} = 7$ (iv) 1·53+1·7 = $\frac{1\cdot53 \times 10}{1\cdot 7 \times 10} = \frac{15\cdot3}{17} = 0\cdot9$
(v) 28·29+2·3 = $\frac{28\cdot29 \times 10}{2\cdot3 \times 10} = \frac{282\cdot9}{23} = 12\cdot3$
(vi) 0·8085+0·35 = $\frac{0\cdot8085 \times 100}{0\cdot35 \times 100} = 2\cdot31$
(vii) 21·976+1·64 = $\frac{21\cdot976 \times 1000}{1\cdot64 \times 1000} = \frac{21976}{1\cdot64} = 13\cdot4$
(viii) 131·58+2·15 = $\frac{13\cdot58 \times 100}{12\times 100} = \frac{13158}{215} = 61\cdot2$
3. (i) 10·8+12 = $\frac{10\cdot8 \times 100}{12\times 100} = \frac{1080}{1200} = 0\cdot9$ (ii) 2·25+15=0·15
(iii) 3·23+19=0·17 (iv) 0·567+9=0·063
(v) 2·32+16=0·145 (vi) 12·8+500=0·0255
(vi) 12·8+500=0·0452
4. The weight total bags of sugar = 3644·5 kg
The number of total bags = 37
The weight of each bag = 3644·5 + 37=98·5 kg
5. Mr. Gupta distributed Money equally among NCC cadets for refreshment = 1840
Each cadet receive money = ₹28.75
The number of total cadets = ₹1840+ ₹28·75=64
6. The length of each bag = 17·4 + 2·9=6
7. Sujata had ribbon = 18·24 + 6=3·04 m
8. The length of total balests = 12
The thickness of 12 sheets of paper = 12+3·24 = 3.70 mm
9. The seats in the balgony of a theater 125
If this is $\frac{1}{5}$ of the total seats, then the number of seats in the theater = $125 \times \frac{1}{5} = \frac{125}{5} = 5$ seats
10. The product of two decimals = 42·987
One decimal is = 12·46 The other = 42·987+12·46= 3·45
Objective Type Questions
1. (i) 2. (iii) 3. (i) 4. (iv) 5. (iii) 6. (iii) 7. (iv) 8. (iii)
True/False

1. False 2. True 3. False 4. False 5. True

	Chapter Assessmen	nt		
1.	(i) 8·975	(ii) 29·423	(iii) 78·358	(iv) 71.76
	(v) 1·46	(vi) 32·57	(vii) 2·1	(viii) 36·27
2.	(i) 0·4	(ii) 0·9	(iii) 11	(iv) 3.59
3.	(i) 7·1	(ii) 14,000	(iii) 9·415	(iv) 4·7
	(v) 3960	(vi) 800	(vii) 75	(viii) 830
4.	(i) 41·38	(ii) 0·08	(iii) 135·0	(iv) 2318·0
	(v) 10·4	(vi) 33·83	(vii) 481·44	(viii) 0·4208
	(ix) 0·171	(x) $45 \cdot 31$	(xi) 0·402	(xii) 0·020556
5.	(i) 0·812	(ii) 0·98612	(iii) 88·9766	(iv) 8·7446
	(v) 10·2	(vi) 33·35	(vii) 0·00611	(viii) 0·042
6.	(i) 57·33	(ii) 5733	(iii) 0·5733	(iv) 57·33
7.	(i) 105·4	(ii) 1·054	(iii) 1054	(iv) 10540
8.	20 minutes	9. 202 · 5	10. 55 · 62 km/h	
11.	3 · 3 kg	12. 2.68		

Chapter-4 Rational Numbers

Exercise = 4.1

1.	The rational numbers are (ii) $\frac{-9}{5}$ (iv) $\frac{-7}{-1}$ (v) $\frac{0}{10}$ (vi) $\frac{0}{11}$
2.	(i) -7 (ii) 0 (iii) $= -9$ (iv) 6 (v) -22 (vi) -14
3.	(i) $\frac{6}{1}$, numerator = 6, denominator = 1 (ii) $\frac{-7}{1}$, numerator = -7, denominators = 1
	(iii) $\frac{1}{1}$, numerator = 1, denominator = 1 (iv) $\frac{0}{1}$, numerator = 0, denominator = 1
4.	(i) positive (ii) negative (iii) positive
	(iv) negative (v) positive (vi) negative
5.	(i) $\frac{7}{12} = \frac{7 \times 2}{12 \times 2} = \frac{7 \times 3}{12 \times 3} = \frac{7 \times 4}{12 \times 4} = \frac{7 \times 5}{12 \times 5} = \frac{14}{24} = \frac{21}{36} = \frac{28}{48} = \frac{35}{60}$
	(ii) $\frac{-4}{9} = \frac{(-4) \times 2}{9 \times 2} = \frac{(-4) \times 3}{9 \times 3} = \frac{(-4) \times 4}{9 \times 4} = \frac{(-4) \times 5}{9 \times 5} = \frac{-8}{18} = \frac{-12}{27} = \frac{-16}{36} = \frac{-20}{45}$
	(iii) $\frac{8}{-16} = \frac{16}{32}, \frac{24}{48}, \frac{32}{64}, \frac{40}{80}$ (iv) $\frac{7}{1}, = \frac{14}{2}, \frac{21}{3}, \frac{28}{4}, \frac{35}{5}$
	(v) $\frac{1}{1} = \frac{2}{2}, \frac{3}{3}, \frac{4}{4}, \frac{5}{5}$ (vi) $\frac{-1}{1} = \frac{-2}{2}, \frac{-3}{3}, \frac{-4}{4}, \frac{-5}{5}$
6.	(i) $\frac{-11}{-13} = \frac{11}{13}$ (ii) $\frac{7}{-22} = \frac{-7}{22}$ (iii) $\frac{-146}{-199} = \frac{146}{199}$ (iv) $\frac{49}{-69} = \frac{-49}{69}$
7.	(i) $\frac{-9}{14} = \frac{9}{-14}$ (ii) $\frac{-19}{-30} = \frac{19}{30}$ (iii) $\frac{-48}{39} = \frac{48}{-39}$ (iv) $\frac{-48}{-33} = \frac{48}{33}$
8.	(i) $\frac{9}{-5}, \frac{x}{10} = \frac{9 \times 2}{5 \times 2} = \frac{18}{10}$ (ii) $\frac{8}{7}, \frac{x}{-35} = \frac{8 \times (-5)}{7 \times (-5)} = \frac{-40}{-35}$

(iii)
$$\frac{36}{x}$$
, $2 = 36 \div 2 = 18$, $x = 18$
(iv) $\frac{x}{6}$, $-13 = -13 \times 6 = -78$
9. (i) $\frac{4}{9}$ and $\frac{44}{99} = \frac{4 \times 11}{9 \times 11} = \frac{44}{99}$ So, $\frac{4}{9}$ and $\frac{44}{99}$ are equivalent number.
(ii) $\frac{7}{-3}$ and $\frac{35}{-15} = \frac{7 \times 5}{-3 \times 5} = \frac{35}{-15}$ So, $\frac{7}{-3}$ and $\frac{35}{-15}$ are equivalent number.
(iii) $\frac{-3}{5}$ and $\frac{-12}{20} = \frac{-3 \times 4}{5 \times 4} = \frac{-12}{20}$
So, $\frac{-3}{5}$ and $\frac{-12}{20} = \frac{-3 \times (-3)}{7 \times (-3)} = \frac{9}{-21}$
(ii) 70 and $\frac{-3}{7} = \frac{-3 \times 10}{7 \times 10} = \frac{-30}{70}$
(iii) 63 and $\frac{-3}{7} = \frac{-3 \times (-3)}{7 \times 9} = \frac{-27}{63}$
(iv) -35 and $\frac{-3}{7} = \frac{-3 \times (-5)}{7 \times (-5)} = \frac{15}{-35}$
11. (i) $\frac{420}{-720} = 420 \div (-28) = 15$ So, $\frac{420 \div (-15)}{-720 \div (-15)} = \frac{-28}{48}$
(ii) $\frac{420}{-720}$, $420 \div (-35) = -12$ So, $\frac{420 \div (-12)}{-720 \div (-12)} = \frac{-35}{60}$
(iv) $\frac{420}{-720} = 420 \div (-105) = (-4)\frac{420 \div (-4)}{-720 \div (-4)} = \frac{-105}{180}$
12. Do your self.
14. (i) $\frac{3}{4}$
(ii) $\frac{-7}{4}$
(ii) $\frac{-7}{-6} = \frac{-4}{-3} = \frac{-2}{-1} = \frac{-1}{0} = \frac{-105}{12} = \frac{-105}{-3}$
(iii) to (viii) do your self

2. (i)
$$\frac{5}{8}$$
 (ii) $\frac{8}{9}$ (iii) $\frac{-6}{7}$ (iv) $\frac{-8}{3}$ (v) $\frac{-5}{-21}$ (vi) $\frac{5}{-8}$
3. (i) $\frac{-3}{-8}$ (ii) $\frac{5}{-8}$ (iii) $\frac{-6}{-13}$ (iv) $\frac{16}{-5}$ (v) $\frac{-4}{3}$ (vi) -3
4. (i) $\frac{-5}{3} < \frac{-4}{5} < \frac{-4}{5} < \frac{1}{7}$ (iii) $\frac{-12}{10} < \frac{-13}{15} < \frac{3}{7} < \frac{11}{5}$
(iii) $\frac{-13}{-3} < \frac{-3}{21} < \frac{2}{7} < \frac{10}{21}$ (iv) $\frac{7}{-8} < \frac{-3}{4} < \frac{-11}{16} < \frac{0}{2}$
5. (i) $\frac{140}{28} > \frac{64}{16} > \frac{7}{8} > \frac{5}{-4} > \frac{36}{-12}$ (ii) $\frac{-3}{10} > \frac{7}{-15} > \frac{-11}{20} > \frac{17}{20}$
6. (i) > (ii) < (iii) > (iv) = 7. $P = \frac{7}{3}, Q = \frac{8}{3}, R = \frac{-7}{3}, S = \frac{-5}{3}$

$$8. (i) \ \frac{-5}{6}, \ \frac{-1}{6}, \ \frac{-3}{6}, \ \frac{-2}{6} \text{ and } \frac{-1}{6} (ii) \ \frac{-11}{6}, \ \frac{-10}{6}, \ \frac{-9}{6}, \ \frac{-8}{6}, \ \frac{-7}{6} \\(iii) \ \frac{39}{120}, \ \frac{38}{120}, \ \frac{37}{120}, \ \frac{36}{120}, \ \frac{35}{120} (iv) \ \frac{-13}{24}, \ \frac{-14}{24}, \ \frac{-15}{24}, \ \frac{-16}{24}, \ \frac{-17}{24} \\(v) \ \frac{10}{45}, \ \frac{11}{45}, \ \frac{12}{45}, \ \frac{13}{45}, \ \frac{14}{45} (vi) \ \frac{-35}{45}, \ \frac{-34}{45}, \ \frac{-33}{45}, \ \frac{-32}{45}, \ \frac{-31}{45} \\ 9. (i) \ \frac{-4}{20}, \ \frac{-5}{25}, \ \frac{-6}{30} (ii) \ \frac{8}{-12}, \ \frac{10}{-15}, \ \frac{12}{-18} (iii) \ \frac{5}{-30}, \ \frac{6}{-36}, \ \frac{7}{-42} \\(iv) \ \frac{-15}{35}, \ \frac{-18}{42}, \ \frac{-21}{49} (v) \ \frac{10}{-55}, \ \frac{12}{-66}, \ \frac{14}{-77} (vi) \ \frac{-25}{60}, \ \frac{30}{-72}, \ \frac{-35}{84} \end{aligned}$$

Exercise = 4.3

1.	(i) -6 (ii) 8 (iii) $\frac{-3}{17}$	(iv) $\frac{13}{19}$	(v) $\frac{17}{21}$	(vi) 0
2.	(i) $\frac{5}{6} + \frac{-1}{6} = \frac{5-1}{6} = \frac{4}{6} = \frac{2}{3}$	(ii) $=\frac{2}{3} + \frac{-4}{3}$	$=\frac{2-4}{3}=\frac{-2}{3}$	
	(iii) $\frac{-5}{7} + \frac{-6}{-7} = \frac{-5}{7} + \frac{-6}{-7} = \frac{-5+6}{7} = \frac{1}{7}$	(iv) $\frac{3}{9} + \frac{1}{-9} =$	$\frac{3}{9} - \frac{1}{9} = \frac{3-1}{9} =$	$\frac{2}{9}$
	(v) $\frac{-4}{5} + \frac{-1}{5} = \frac{(-4) + (-1)}{5} = \frac{-5}{5} = -1$	(vi) $\frac{-3}{8} + \frac{-1}{8}$	$=\frac{(-3)+(-1)}{8}=$	$\frac{-4}{8} = \frac{-1}{2}$
3.	(i) $\frac{-3}{5} + \frac{7}{5} + \frac{-1}{5} = \frac{(-3) + 7 + (-1)}{5} = \frac{3}{5}$			
	(ii) $\frac{-12}{7} + \frac{3}{7} + \frac{-2}{7} = \frac{(-12)+3+(-2)}{7} = \frac{-11}{7}$			
	(iii) $\frac{11}{12} + \frac{3}{-8} + \frac{1}{4} = \frac{22+9+6}{-24} = \frac{37}{-24}$			
	(iv) $\frac{-16}{9} + \frac{-5}{12} + \frac{7}{8} = \frac{-64 - 15 + 14}{36} = \frac{-64 - 1}{36} = \frac{-64 - 1}$	$=\frac{-65}{36}$		
	(v) and (vi) as similar as (i) to (iv). So, do you 4^{-3} 3^{-2} 2^{-1} 11		0	
4.	(i) $\frac{4}{7} - \frac{3}{8} = \frac{32 - 21}{56} = \frac{11}{56}$	(ii) $\frac{-8}{13} - 0 =$	$\frac{-8}{13}$	
	(iii) $\frac{4}{15} - \frac{13}{17} = \frac{68 - 195}{255} = \frac{-127}{255}$			
	(iv) $0 - \frac{-17}{27} = 0$ (v) and (vi) as similar as (i) t	to (iv). So, do	your self.]	
5.	(i) $-\frac{4}{5} - \frac{3}{15} + \frac{7}{20} = \left(-\frac{4}{5} - \frac{3}{15}\right) + \frac{7}{20} = \left(\frac{-12}{5}\right)$	$\left(\frac{-3}{20}\right) + \frac{7}{20}$		
	$=\frac{-15}{15} + \frac{7}{20} = \frac{-60 + 21}{60} = \frac{-39}{60} = \frac{13}{20}$			
	(ii) $\frac{-5}{13} - \frac{-3}{26} - \frac{9}{-52} = \frac{-20+6+9}{52} = \frac{-20+15}{52} = $	$=\frac{-5}{52}$		
	13 26 -52 52 52 (iii) and (iv) Similar as (i) and (ii) so, do you	01		
	· · · · · · · · · · · · · · · · · · ·			

6. (i)
$$\frac{13}{6} = 2 + \frac{1}{6}$$
 (ii) $\frac{-13}{9} = -1 + \left(\frac{-4}{9}\right)$
(iii) $\frac{-35}{11} = -3 + \left(\frac{-2}{11}\right)$ (iv) $\frac{-105}{20} = -5 + \left(\frac{-5}{20}\right)$
7. $-5 - \frac{2}{3} = \frac{-5}{1} - \frac{2}{3} = \frac{-15 - 2}{3} = \frac{-17}{3}$
8. $1 - \frac{-3}{4} = \frac{1}{1} - \frac{-3}{4} = \frac{4 - (-3)}{4} = \frac{7}{4}$
9. $\frac{-1}{2} + \frac{-3}{3} - \frac{-11}{20} = \frac{-10 - 12 + 11}{20} = \frac{-22 + 11}{20} = \frac{-11}{20}$

10. Do your self.

Exercise = 4.4

1. (i)
$$17 = \frac{1}{17}$$
 (ii) $-15 = \frac{-1}{15}$ (iii) $\frac{14}{25} = \frac{25}{14}$ (iv) $\frac{-18}{13} = \frac{-13}{18}$
2. (i) $\frac{-16}{21} \times \frac{14}{5} = \frac{-16 \times 14}{21 \times 5} = \frac{-224}{105} = \frac{-32}{15}$
(ii) $\frac{7}{6} \times \frac{-3}{28} = \frac{-21}{168} = \frac{-7}{56} = \frac{-1}{8}$
(iii) $\frac{-19}{36} \times 16 = \frac{-19}{36} \times \frac{16}{1} = \frac{-19 \times 16}{36 \times 1} = \frac{152}{18} = \frac{-76}{9}$
(iv) $\frac{-13}{9} \times \frac{27}{-26} = \frac{-13 \times 27}{9 \times (-26)} = \frac{-354}{234} = \frac{3}{2}$
(v), (vi), (vii) and (viii) as similar as (i) to (iv). So, Do your self.
3. (i) $-12 \div \frac{9}{5} = \frac{-12}{1} \div \frac{9}{5} = \frac{-12}{1} \times \frac{5}{9} = \frac{-60}{9} = \frac{-20}{3} = -6\frac{2}{3}$
(ii) $\frac{-3}{8} \div 7 = \frac{-3}{8} \div \frac{7}{1} = \frac{-3}{8} \times \frac{1}{7} = \frac{-3}{56}$
(iii) $\frac{-7}{12} \div \frac{-2}{63} = \frac{-7}{12} \times \frac{63}{2} = \frac{-441}{-24} = \frac{147}{8}$
(iv), (v) and (vi) as similar as (i) to (iii). So, do your self.
4. (i) $\left(\frac{11}{3} \times \frac{-13}{5}\right) - \frac{4}{15} = \frac{-143}{15} - \frac{4}{15} = \frac{-143-4}{15} = \frac{-147}{15}$
(ii) $\left(\frac{1}{3} \div \frac{5}{6} - \frac{1}{6}\right) \div \frac{4}{5} = \left(\frac{1}{3} \div \frac{5}{6}\right) - \frac{1}{6} \div \frac{4}{5} = \left(\frac{2+5}{6}\right) - \frac{1}{6} \div \frac{4}{5}$
(iii) $\frac{3}{4} \div \frac{5}{8} \times \frac{5}{7} + \frac{2}{9} - \frac{1}{9} = \left(\frac{3}{4} \div \frac{5}{8}\right) \times \frac{5}{7} + \frac{2}{9} - \frac{1}{9}$

$$= \left(\frac{120}{140} + \frac{2}{9}\right) - \frac{1}{9} = \left(\frac{1080 + 280}{1260}\right) - \frac{1}{9} = \frac{1,360}{1,260} - \frac{1}{9}$$

$$= \frac{1,360 - 140}{1,260} = \frac{1,220}{1,260} = \frac{61}{63}$$

(iv), (v) and (vi) as similar as (i) to (vii). So, do your self.
5. $\frac{7}{5} - \frac{5}{7} = \frac{49 - 25}{35} = \frac{24}{35}$
6. Yes
7. (i) $\frac{-14}{19}$ (ii) $\frac{4}{5}$ (iii) $\frac{-3}{4}$ (iv) 10
8. $15 - \frac{-2}{3} = \frac{15}{1} - \frac{-2}{3} = \frac{45 - (-2)}{3} = \frac{-47}{3}$
9. $\frac{7}{2} \div \frac{-5}{4} = \frac{7}{2} \times \frac{4}{-5} = \frac{28}{-10} = \frac{14}{5}$
10. $\left(\frac{2}{5} + \frac{3}{7}\right) \div \frac{4}{7} = \left(\frac{14 + 15}{35}\right) \div \frac{4}{7} = \frac{29}{35} \div \frac{4}{7} = \frac{29}{35} \times \frac{7}{4} = \frac{203}{140} = \frac{29}{20}$
11. $\left(\frac{5}{9} - \frac{3}{5}\right) \div \left(\frac{5}{7} \times \frac{28}{3}\right) = \left(\frac{25 - 27}{45}\right) \div \frac{140}{21}$
 $= \frac{-2}{45} \div \frac{140}{21} = \frac{-2}{45} \times \frac{21}{140} = \frac{-42}{6,300} = \frac{-1}{150}$

12, 13, 14 and 15 as similar as 10. and 11. So, do your self.

Objective Type Questions

1. (i) **2.** (iv) **3.** (iv) **4.** (iii) **5.** (i) **6.** (iii) **7.** (ii) **8.** (iii) **9.** (i) **10.** (iv)

Fill in the blanks

1. Rational number 2. Infinite 3. Positive 4. Additive 5. Rational number 6. Zero.

Matching

1. (v) 2. (iii) 3. (vi) 4. (i) 5. (iv) 6. (ii)

Chapter Assessment

1. (i)
$$-1\frac{2}{3}$$
 (ii) $-1\frac{1}{3}$ (iii) $-1\frac{1}{6}$ (iv) $1\frac{2}{3}$

2. (i), (iii) and (iv) are equivalent rational numbers.

3. (i)
$$\frac{-13}{-5}$$
 (ii) $\frac{-5}{6}$ (iii) $\frac{1}{4}$ (iv) $-\frac{7}{12}$ (v) $\frac{7}{8}$ (vi) $\frac{-2}{5}$
4. (i) $\frac{2}{3} < \frac{5}{6} < \frac{7}{8}$ (ii) $\frac{27}{55} < \frac{9}{10} < \frac{10}{11}$
(iii) $\frac{-4}{3} < \frac{-2}{9} < \frac{1}{3}$ (iv) $\frac{-5}{7} < \frac{-3}{7} < \frac{-1}{7}$
5. (i) $\frac{-7}{18}$ (ii) $-\frac{1}{6}$ (iii) $\frac{37}{8}$ (iv) $\frac{7}{6}$ (v) 0 (vi) 1

7. (i)
$$\frac{-4}{5}$$
 (ii) 0 (iii) $\frac{-12}{21}$ (iv) $\frac{14}{33}$ (v) 1 (vi) -2
8. (i) $\frac{-9}{16}$ (ii) $\frac{7}{11}$ (iii) -3 (iv) $1\frac{5}{27}$
9. (i) $\frac{-5}{26}$ (ii) $\frac{-5}{14}$ (iii) $\frac{34}{9}$ (iv) $\frac{77}{23}$
10. (-36) 11. $\frac{2}{9}$ 12. $\frac{7}{10}$ kg, 13. ₹ 424 14. 18 15. $\frac{1}{6}$ part.

Chapter-5 Exponents (Powers)

Exercise = 5.1

(ii) $B = \frac{1}{3}, E = 5$ (i) B = 7, E = 14(iii) B = 875, E = -31. (vi) $B = \frac{1}{7}, E = 6$ (v) B = -1, E = 15(iv) B = -4, E = 9(iii) $11^3 a^2 b^2$ (ii) 3^{17} (i) $(-5)^6$ 2. (iv) $ab^{3}c^{2}$ (v) $(-17)^1$ 3. (i) $11 \times 11 \times 11 \times 11 = 14641$ (ii) $(-4) \times (-4) \times (-4) \times (-4) = 256$ (iii) $(4 \times 4 \times 4) \times (3 \times 3 \times 3) = 5184$ (iv) $(-9)^3 \times (-9) \times (-9) \times 4 \times 4 = -11664$ (vi) $(6 \times 6 \times 6) \times (-6) \times (-6) = 7,776$ (vii) $(-1)\times(-1)\times(-1)\times(-1)$111 times $\times(-1)\times(-1)\times(-1)\times(-1)\times(-1)$35 times = 1 (viii) $(-3) \times (-3) \times (-3) \times (-3) \times (-3) \times (-3) \times (-3) \times (0) \times (-2) \times (-2) = 0$ (i) $243 = 3^5$ (ii) $512 = 2^9$ 4. (iii) $2048 = 2^{11}$ (iv) $2187 = 3^7$ (i) $5 \times 5 \times 5 = 625$, $4 \times 4 \times 4 \times 4 \times 4 = 1024$, So, 625 < 1024, 4^5 is greater 5. (ii) $2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64, 6 \times 6 = 36$ So, 64 > 36, 2^6 is greater. (iii) $3 \times 3 \times 3 \times 3 \times 3 = 243, 5 \times 5 \times 5 = 125$ So, 243 > 125, 3^5 is greater (iv) $7 \times 7 = 49, 2 \times 2 \times 2 \times 2 \times 2 = 64$ So, 49 < 64, 2^6 is greater 6. (i) $648 = 2 \times 324$ $= 2 \times 2 \times 162$ $= 2 \times 2 \times 2 \times 81$ 9 3 $= 2 \times 2 \times 2 \times 3 \times 27$ $= 2 \times 2 \times 2 \times 3 \times 3 \times 9$ 1 $= 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$ $= 2^3 \times 3^4$

(19)

(iv)
$$10^{10} \div 10^{6} = 10^{10-6} = 10^{4}$$

(v) $[(8)^{3}]^{5} = 8^{3\times 5} = 8^{15}$
(vi) $[(5)^{3}]^{8} = 5^{3\times 8} = 5^{24}$
(vii) $[(2^{3})^{4}]^{5} = (2^{3\times 4})^{5} = 2^{12\times 5} = 2^{60}$
(viii) $7^{4} \times 7^{5} \div 7^{3} = 7^{4+5} \div 7^{3} = 7^{9} \div 7^{3} = 7^{9-3} = 7^{6}$
2. (i) $\frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}} = \frac{3^{5} \times (2 \times 15)^{5} \times 5^{2}}{5^{7} \times (2 \times 3)^{5}} = \frac{3^{5} \times 2^{5} \times 5^{5} \times 5^{5}}{5^{7} \times 2^{5} \times 3^{5}} = 1$
(ii) $\frac{2^{3} \times 3^{4} \times 4}{3 \times 3^{2}} = \frac{2^{3} \times 3^{4} \times 2^{2}}{3^{1+2}} = \frac{2^{5} \times 3^{4}}{3 \times 3^{3}} = 2^{5} \times 3^{4-3} = 2^{5} \times 3$
(iii) $\frac{3 \times 7^{2} \times 11^{3}}{21 \times 11^{3}} = \frac{3 \times 7^{2} \times 11^{8}}{3 \times 7 \times 11^{3}} = 7^{2-1} \times 11^{8-3} = 7 \times 11^{5}$
(iv) $2^{0} \times 3^{0} \times 4^{0} = 1 \times 1 \times 1 = 1$
(v) $(2^{3} \times 2)^{2} = (2^{4})^{2} = 2^{8}$
(vi) $25^{4} \div 5^{3} = \frac{(5^{2})^{4}}{5^{3}} = 5^{8-3} = 5^{5}$

(ii) $-2187 = (-3) \times (-3) \times (-3) \times (-3) \times (-3) \times (-3) \times (-3) = (-3)^7$

(i) 7776 = $6 \times 6 \times 6 \times 6 \times 6 = 6^5$

(ii) $8^2 \times 8^3 \times 8^4 = 8^{2+3+4} = 8^9$

1. (i) $4^{13} \times 4^{19} 4^{13+19} = 4^{32}$

(iii) $9^5 \div 9 = 9^{5-1} = 9^4$

7.

3. (i)
$$(6^2)^2 = 6^{5\times2} = 6^4$$
 (ii) $\{(-3)^2\}^3 = (-3)^{5\times3} = (-3)^6$
(iii) $\left\{\left(\frac{1}{5}\right)^3\right\}^2 = \left(\frac{1}{5}\right)^{5\times2} = \left(\frac{1}{5}\right)^6$ (iv) $(10^3)^4 = 10^{5\times4} = 10^{12}$
(v) $\left\{\left(\frac{-1}{3}\right)^4\right\}^2 = \left(\frac{-1}{3}\right)^{4\times2} = \left(\frac{-1}{3}\right)^8$ (vi) $(x^2)^6 = x^{3\times6} = x^{26}$
(vii) $(b^m)^6 = b^{m\times n} = b^{mn}$
(viii) $((-2)^8)^3 = (-2)^{5\times3} = (-2)^{53}$
4. (i) $\left(\frac{2}{7}\right)^{-3} + \left(\frac{2}{7}\right)^{-2} = \left(\frac{2}{7}\right)^{-3\times2} = \frac{2}{7} = \frac{7}{2}$
(ii) $\left(\frac{3}{5}\right)^4 + \left(\frac{1}{4}\right)^5 = (1+1)^{-2} = \frac{2}{7} = \frac{7}{2}$
(ii) $\left(\frac{3}{5}\right)^4 + \left(\frac{1}{4}\right)^{-2} + \left(\frac{1}{4}\right)^{-4} = 2^3 + 3^2 + 4 = 8 + 9 + 4 = 21$
(iv) $\left[\left(\frac{-4}{3}\right)^{-2} + \left(\frac{-4}{3}\right)^{-1} + \left(\frac{4}{3}\right)^{-1}\right]^2 = \left(\frac{-4}{5}\right)^{-2^{3\times3}} \times \left(\frac{-4}{5}\right)^2$
 $= \left(\frac{-4}{5}\right)^{-2^{3\times2-2}} = \left(\frac{-4}{5}\right)^{-1} = \frac{-4}{5} = -\frac{5}{4}$
5. (i) $\frac{2|270}{\frac{3|135}{\frac{3|45}{\frac{5}|5|}} = \frac{1}{1}$
 $270 = 2 \times 5 \times 3^3$
(ii) $\frac{2|270}{\frac{3|435}{\frac{3|45}{\frac{3}|15}}} = \frac{(ii)}{\frac{2|192}{\frac{2}|192}} = \frac{2}{\frac{2}{16}\frac{6}{\frac{3}|3|15}} = \frac{3|729|}{\frac{2}{2}|19|} = \frac{3|729|}{\frac{2}{2}|19|} = \frac{3|729|}{\frac{2}{2}|19|} = \frac{3|729|}{\frac{2}{2}|16|} = \frac{3|729|}{\frac{3}{2}|43|} = \frac{3|729|}{\frac{3}{2}|43|} = \frac{3|729|}{\frac{3}{2}|14|} = \frac{3|729|}{\frac{3}{2}|14|} = \frac{3|729|}{\frac{3}{2}|14|} = \frac{3|729|}{\frac{2}{2}|16|} = \frac{3|729|}{\frac{2}{2}|16|} = \frac{3|729|}{\frac{3}{2}|14|} = \frac{12}{2} = \frac{12}{1}$
(i) $(2^7)^8 \times 5^{6+2} 2^{12} = 2^{10}$ on comparing the powers
 $2n = 12; \frac{n-6}{2}$

(21)

$$2^{5n-n} = 2^{4}$$

$$2^{4n} = 2^{4}$$
an comparing the powers, $n = 4$, $n = \frac{4}{4}$, $n = 1$
(iii) $2^{n-5} \times 5^{n-4} = 5$

$$= 2^{n-5} \times \frac{5^{n-4}}{5} = 1 = 2^{n-5} \times 5^{n-4} = 1$$
 $2^{n-5} \times 5^{n-5} = 1, (2 \times 5)^{n-5} = (2 \times 5)^{0}, n-5 = 0, n = 5$
(iv), (v) and (vi) similar as (i) to (iii), So, do your self.
8. $\frac{p}{q} = \left(\frac{2}{3}\right)^{2} \div \left(\frac{6}{7}\right)^{0}$
 $\frac{p}{q} = \left(\frac{2}{3}\right)^{2} \div \left(\frac{6}{7}\right)^{0}$
29. $\frac{10 \times 5^{n+1} + 25 \times 5^{n}}{3 \times 5^{n+2} + 10 \times 5^{n+1}} = \frac{2 \times 5 \times 5^{n+1} + 5 \times 5 \times 5^{n}}{3 \times 5^{n+2} + 2 \times 5 \times 5^{n+1}}$
 $= \frac{2 \times 5^{n+2} + 5^{n+2}}{3 \times 5^{n+2} + 2 \times 5^{n+2}} = \frac{5^{\mu\nu z}}{3^{\nu\nu z}} (2+1)}{3^{\nu\nu z}} = \frac{3}{5}$
10. $\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$
 $= \frac{(3^{2})^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{27}$
 $= \frac{3^{3n+2} - 3^{3n}}{3^{15} \times 2^{3}} = \frac{1}{27}$, $\frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = \frac{1}{3}$
 $= \frac{9 \cdot 3^{3m} - 3^{3n}}{3^{15} \times 2^{3}} = \frac{1}{3}$, $\frac{8 \cdot 3^{3n}}{3^{15} \cdot 2^{3}} = \frac{1}{3}$, $\frac{2^{y} \cdot 3^{3n}}{3^{15} \cdot 2^{y}} = \frac{1}{3^{3}}$
 $= \frac{3^{n}}{3^{15} \times 2^{3}} = 3^{-3}$, $n-5=-3$, $n=5-3$, $n=2$

Exercise = 5.3

- 1.(i) $19 \text{ billian.} = 190000000001 \cdot 9 \times 10^{10}$ (ii) $356 \text{ million} = 356000000 = 3 \cdot 56 \times 10^{0}$ (iii) $27400000000 = 2 \cdot 74 \times 10^{10}$ (iv) $784 \cdot 847 = 7 \cdot 843 \times 10^{2}$ 2.(i) $7 \cdot 5 \times 107 = 75000000$ (ii) $5 \cdot 064 \times 10^{3} = 5064$ (iii) $3 \cdot 7 \times 10^{6} = 37000000$ (iv) $4 \cdot 44 \times 10^{4} = 44400$
- 3. (i) diamteen of earth = $12756000 \text{ m} = 1 \cdot 2756 \times 10^7 \text{ m} = 1.2756 \times 10^7 \text{ m}.$
 - (ii) $3 \cdot 84 \times 10^8$ m
 - (iv) 1.0×10^{11}
- (iii) 1.027×10^9
- (v) $1 \cdot 2 \times 10^{10}$ years.

Objective Type Questions

1. (ii) **2.** (iii) **3.** (i) **4.** (iv) **5.** (iv) **6.** (iii) **7.** (i) **8.** (i)

Fill in the blanks

1. exponents 2. multiplication 3. exponential 4. power 5. base

True/False

1. True 2. False 3. True 4. True 5. False

	Chapter Assessment			
1.	(i) 2^8	(ii) 3 ⁴		(iii) 5 ⁴
2.	(i) 144	(ii) 3430000	(iii) 190000	(iv) 24
	(v) 225	(vi) 225	(vi) 1944	
3.	(i) 3^6 (ii) 3^5		(iv) 3^2	(v) 2^8
4.	(i) $2^3 \times 5^3$	(ii) $2^7 \times 5^3$		(iii) $2^4 \times 3^2 \times 5^2$
5.	(i) 25	(ii) 216	(iii) $\frac{27}{8}$	(iv) $\frac{169}{36}$
6.	(i) $(2a)^2$	(ii) 3 ³	(iii) 2	(iv) 162
7.	(i) $\frac{1}{81}$	(ii) 30	(iii) $\frac{6}{5}$	(iv) -10
8.	(i) 1	(ii) -2		
9.	$-\frac{128}{675}$			
10.	(i) $3 \cdot 0 \times 10^8$ m/D	(ii) 1×10^{11}		(iii) $8 \cdot 6 \times 10^{28}$ g
	(iv) 1.49×10^{11} mv	(v) $4 \cdot 8 \times 10^{-10}$) ⁹	(vi) 1.73448×10^9 s
	(vii) 5.95×10^{24} kg	(viii) 6·37×1	$10^6 m$	

Chapter-6 Algebraic Expression

Exercise = 6.1

1.	(i) $7 + 3x$	(ii) 11 <i>y</i> -22	(iii) $\frac{x}{y} - 13 = 7$	(iv) $p - q = 19$		
	(v) $xy + (x + y)$.	(vi) <i>x</i> +18	(vii) $3xy + (x - y) =$	17		
2.	(i) Terms are 17x	;, −7, number of terms	s = 2			
	(ii) $8a - 4b + 2c$, Terms are $= 8a, -4b, 2c$,					
	Number of terms $= 3$					
	(iii) $\frac{6}{a} - 2b + 3a^2b$					
	Terms or $=\frac{6}{a}$, $-2b$, $3a^2b$, Number of terms $= 3$					
	(iv) $pq + qr - rp$, Terms or $= Pq$, qr , $-rp$					
	Number of ter					
		-	$y^3, z^1, -3xyz$, Numbe			
	(vi) $9xy - \frac{y}{x} + \frac{12}{x} - \frac{y}{x} + \frac{12}{x} - \frac{y}{x} + \frac{12}{x} - \frac{y}{x} + \frac{12}{x} - \frac{y}{x} + \frac{y}{x} +$	$\frac{8xy}{5}$, Terms are = $9x$	$y, \frac{y}{x}, \frac{12}{x}, \frac{8xy}{5}$, Number of	of terms $= 4$		
3.	(i) $2xy$ and $-3xy$;	$-4x^2y$ and $7yx^2$				
	(ii) $5x^2 yz - 4 yzx^2$	and $7zyx^2$; $2y^2x$ and	$14xy^2$			
	(iii) $\frac{2}{5}ab^2c, \frac{-1}{3}ac$	b^2	(iv) $-7xy$ and $3xy$			
		(23)			

4. (i) -3 (ii)
$$\frac{-17}{5}$$
 (iii) 2
5. (i) 8, x, x, x, y, y (ii) -2, x, x, y, y, y, z, z
(iii) 9, p, p, p, q, r, r (iv) -6, a, a, a, b, c, c
6. (i) 7xy (ii) 6y (iii) 7x³ y (iv) 4y²
(v) $16x^{2}y$ (vi) $7xz^{3}$ (vii) 16y (viii) 1
7. (i) $3a^{2} + b = 3(2)^{2} + (-1) = 3 \times 4 + (-1) = 12 + (-1) = 11$
(ii), (iii) as similar as (i), So, do your self.
(iv) $ab^{2} + a^{2}b = 2 \times (-1)^{2} + (2)^{2} \times (-1)$
 $= 2 \times (-1) + 4 \times (-1) = -2 + (-4) = -6$
(v) $a + b + c = 2 + (-1) + (-2) = 1 + (-2) = 1$

Exercise = 6.2

1. (i)
$$6b+7b=13b$$
 (ii) $y^{2}+(-6y^{2})=-5y^{2}$ (iii) $3p^{2}q+4p^{2}q=7p^{2}q$
(iv), (v) and (vi) as similar as (i) to (iii). So, do your self.
2. (i) $x-8y+4z+y-2n-8z+5x-2y-3z$
 $=4x-4y-7z$
(ii) $2x^{2}-3y^{2}+5x^{2}+6y^{2}-3x^{2}-4y^{2}=4x^{2}-y^{2}$
(iii) $5x-2x^{2}-8+8x^{2}-7x-9+3+7x^{2}-2x$
 $=13x^{2}-4x-14$
3. (i) $(2x+7y)-(4x-5y)$
 $=2x+7x-4x+5y$
 $=-2x+1xy$
(ii) $(2a+5b-7c)-(a-2b+c)$
 $=2a+5b-7c-a+2b-c$
 $=a+7b-8c$
(iii) $(3a^{2}+9)-(4a^{2}-2a+7)$
 $=3a^{2}+9-4a^{2}+2a-7=-a^{2}+2a+2$
Exercise = 6.3

1. (i)
$$(a^{2} + b^{2} + 2ab) + (a^{2} + b^{2} - 2ab)$$

 $= (a^{2} + b^{2}) + (b^{2} + b^{2}) + 2ab - 2ab = 2a^{2} + 2b^{2}$
(ii) $(a^{2} + b^{2} + 2ab) - (a^{2} + b^{2} - 2ab)$
 $= a^{2} + b^{2} + 2ab - a^{2} - b^{2} + 2ab = 4ab$
(iii) $-5 (a + b) + 2 (2a - b) + 4a - 7$
 $= -5a - 5b + 4a - 2b + 4a - 7$
 $= (-5a + 4a + 4a) + (-5 - 2b) - 7 = 3a - 7b - 7$
(iv) $-3 (a + b) + 4 (2a - 3b) - (2a - b)$
 $= -3a - 3b + 8a - 12b - 2a + b$
 $= (-3a + 8a - 2a) + (-3b - 12b + b) = 2a - 14b$
(v) $2x - \{5y - (x - 2y)\} = 2n - 5y + x - 2y = 3x - 7y$
(24)

(vi)
$$2x - [3y - \{2x - (y - x)\}] = 2x - 3y + 2x - (y - x)$$

= $4x - 3y - y + x = 5x - 4y$
(vii) $-m - [m + \{m + n - 2m - (m - 2n)\} - n]$

$$= -m - m - \{m + n - 2m - m + 2n\} + n$$

= 2m - m - n + 2m + m - 2n + n = -2n
ii) $3r^2 z - 4nz + 3rn - (r^2 z - (r^2 z - 3nz))$

(viii)
$$3x^2z - 4yz + 3xy - \{x^2z - (x^2z - 3yz) - 4yz - 7z\}$$

= $3x^2z - 4yz + 3xy - x^2z + x^2z = -3yz + 4yz + 7z$
= $3x^2z - 3yz + 3xy + 7z$

(ix)
$$15x - [8x^3 + 3x^2 - \{8x^2 - (4 - 2x - x^3 - 5x^3\} - 2n]$$

= $15x - 8x^3 - 3x^2 + 8x^2 - 4 + 2x + x^3 - 5x^3 + 2x$
= $-12x^3 + 5x^2 + 19x - 4$

(x)
$$5+[x-\{2y-(6x+y-4)+2x^2\}-(x^2-2y)]$$

= $5+x-2y+6x+y=4-2x^2+x^2-2y$
= $-x^2+7x-3y+1$

(xi)
$$5y - [2x - 3y - 3\{52 - 2(x - \overline{2y - 3z - 2x})\}]$$

= $5y - [2x - 3y - 10z + 6(x - \overline{2y - 3z - 2x})]$
= $5y - [2x - 3y - 10z + 6x - 12y + 18z + 12x]$
= $5y - 2x + 3y + 10z - 6x + 12y - 18z - 12x$
= $-20 + 20y - 8z$

(xii)
$$2x - [3y - 4z - 3(x - \overline{2y - z})]$$

= $2x - [3y - 4z - 3(x - 2y + z)]$
= $2x - [3y - 4z - 3x + 6y - 3x]$
= $2x - 3y + 4z + 3x - 6y + 3z = 5x - 9y + 7z$

Objective Type Questions

1. (ii) **2.** (i) **3.** (iii) **4.** (i) **5.** (iv) **6.** (ii) **7.** (iv) **8.** (iii)

Fill in the blanks

1. constant 2. three 3. polynomial 4. power 5. numerical

Matching

1. (iii) **2.** (vi) **3.** (i) **4.** (v) **5.** (ii) **6.** (iv)

Chapter Assessment

1. (i) 2 (ii) -3y (iii) $4y^2z$ (iv) $5y^2$ (v) xy^3z^4 , 2. (i)

Term	Numerical Coefficient
$-2x^2$	2
$-7x^2y$	-7
$5xy^2$	5
-8z	-8

Term	Numerical Coefficient
4 <i>pq</i>	4
$-5q^2$	-5
$-3p^2$	-3

3.

(ii)

	Term	Numerical Coefficient
(i)	$8x^2, -5y$	8, x, x, -5, y
(ii)	$3z^2y$, $4xy^2$, $-8x^3$	3, <i>z</i> , <i>z</i> , <i>z</i> , 4, <i>x</i> , <i>y</i> , <i>y</i> , -8, <i>x</i> , <i>x</i> , <i>x</i>
(iii)	$1 \ln xy^2$, $13x^2 y$	11, <i>x</i> , <i>y</i> , <i>y</i> , 13, <i>x</i> , <i>x</i> , <i>y</i>
(iv)	$9xy, -12x^2y, 17y^2$	9, <i>x</i> , <i>y</i> , -12, <i>x</i> , <i>x</i> , <i>y</i> , 17, <i>y</i> , <i>y</i>

(ii) $a^2 - 3a^2$ (iii) $x^2 - 2x^2$ (iv) $2x^2y - 4yx^2$ 4. (i) a + 6a(v) $-8ab^2 + 2ab^2$ (vi) xyz + 7xyz(v) 6 5. (i) 2 (ii) 3 (iii) 4 (iv) 3 (vi) 3 (ii) $2x^3 + 3x^2 - x - 1$ 6. (i) -13ab (iii) 6+3b+c(iv) $4x^3 + 3x^2y - y^3$ (v) $x + 17x^3$ (ii) $x^2 - 2y^2 + 6xy$ (iii) -2x - 2y - z7. (i) 14*ab* (v) $-4m+14n-9p^2$ (iv) 3a + 3b + 4c $5a^2 - 7ab + 3b^2 - a + b$ 9. $5a^2 + 3b^2 - 7ab - a + b$ 8. **10.** a = -511.38 **12.** (20x+16) m **13.** (6a + 9b) m

Chapter-7 Simple Equations

Exercise = 7.1

1.	(i) $x - 11 = 5$	(ii) $5a = 60$	(iii) $\frac{p}{4} = 3$
	(iv) $x^2 = 5 + x$	(v) $x + 2y = 30$	(vi) $3m - 4 = 14$
	(vii) $a + a^2 = 20$	(viii) $\frac{9+4}{y} = \frac{7}{3}$	(ix) $\frac{3m}{4} = m - 1$

- (x) 7z + 8 = 71
- 2. (i) The difference between twice a number and 6 is 24.
 - (ii) Adding 3 to one third of a number gives 14.
 - (iii) Taking away 4 from 4 times of a number gives 44.
 - (iv) Three fourth of Z is 15 less than itseb.
 - (v) Half of a number P is equal to 3.
 - (vi) A number 3 less than 9 times another number y is equal to 7.
- 3. (i) Let, the width of ground = x, 30 + x = 120
 - (ii) Let, Vani's sister weight = x, 2x + 4 = 50

(iii) Let, the warden angle = x

base angles = y

$$x = 2y$$
,
 $2x + y + y = 180$,
 $2y + y + y = 180$
 $4y = 180$
 $y = \frac{180^{45}}{4}$
 $y = 45$
 45° , 45° , 90°
(iv) No. of students = 656
Number of boys = x
Number of girls = $x + 86$
 $x + 86 + x = 656$
 $2x + 86 = 656$
 $2x + 85 = 50$
(v) Let, No. of shirts Amit has = x , $3x - 8 = 7$
4. (i) $7x + 15 = 45$, $x = 5$ on putting $x = 5$ in showing
LHS. $7x + 5 + 5$
 $= 35 + 5 = 40 \neq 45$
 $x = 5$ is not solve.
(ii) $7x + 2 = 23$; $x = 3$
LHS $7x + 2$
on putting $x = 3$
 $= 7 \times 3 + 2 = 21 + 2 = 23$
RHS. $x = 3$ is solve
(iii) $\frac{4x}{5} + 2 = 6$; $x = 5$
LHS. $\frac{4x}{5} + 2 = \frac{4 \times 5}{5x} + 2$ $= 4 + 2 = 6$ $x = 5$ is solve.
(iv) $4p - 5 = 16$; $p = 7$
LHS. $4p - 5 = 48 \times 7 - 5$ $= 28 - 5 = 23$ $p = 7$ is not solve.
(v) $4p - 5 = 23$; $p = 7$, same as (iv)
(vi) $2x + 5 = 15$; $x = 5$
LHS. $2x + 5 = 2 \times 5 + 5 = 10 + 5 = 15$ $x = 5$ is solve.
5. (i) $\frac{2x + 4 = 8}{2}$

x	LHS	RHS	LHS = RGS	
1	2 + 4 = 6	8	No	
2	4 + 4 = 8	8	Yes	

Hence, solve is x = 2

(ii) 11 + 2x = 19

x	LHS	RHS	LHS = RGS
1	11+2=13	19	No
2	11 + 4 = 15	19	No
3	11 + 6 = 17	19	No
4	11 + 8 = 19	19	Yes

Hence, the solution is x = 4

(iii) $\frac{12}{m} = 3$

x	LHS	RHS	LHS = RGS	
1	12	3	No	
2	6	3	No	
3	4	3	No	
4	3	3	Yes	

Hence, the solution is m = 4

(iv)
$$\frac{x}{3} + 5 = 7$$

6.

x	LHS	RHS	LHS = RGS
3	1 + 5 = 6	7	No
6	2 + 5 = 7	7	Yes

Solution is x = 6

(i) $5x - 2 = 18$ 5x = 18 + 2 5x = 20 $x = 4, x = \frac{20}{5}$	Answer Check:	LHS.	$5x-2$ $= 5 \times 4 - 2$ $= 20 - 2$ $= 18$
(ii) $\frac{1}{4}y + \frac{1}{2} = 5$ $\frac{y+2}{4} = 5$	Answer check :	RHS	$= RHS.$ $\frac{y}{4} + \frac{1}{2}$ $= \frac{18^9}{4^2} + \frac{1}{2}$
y + 2 = 20 $y = 20 - 2$			$=\frac{9+1}{2}$ $=\frac{18}{2}=5$
y = 18			= RHS

(28)

(iii)
$$\frac{3}{5}x - 6 = 3$$
 Answer check : RHS. $\frac{3}{5}x - 6$
 $= \frac{3x - 30}{5} = 3$ $= \frac{3}{5} \times 15^3 - 6$
 $3x - 30 = 15$ $= 9 - 6$
 $3x - 30 + 15$ $= 3$
 $3x - 45$ $= RHS.$
 $x = 15$
(iv) $3x - \frac{1}{5} = 2 - x$
 $\frac{15x - 1}{5} = \frac{2 - x}{1}$, $15x - 1 = 10 - 5x$, $15x + 5x = 10 + 1$,
 $20x = 11$, $x = \frac{11}{20}$
(v) $8x + 5 = 6x - 5$
 $8x - 6x = -5 - 5$, $2x = -10$, $x = \frac{-10}{2}$, $x = -5$
(vi) $9z - 13 = 11z + 27$
 $9z - 11z = 13 + 27$, $-2z = 40$ $z = \frac{-40}{2}$, $z = -20$
(vii) $\frac{7}{y} + 1 = 29$
 $\frac{7}{y} = 29 - 1$, $\frac{7}{y} = 28$, $y = \frac{7}{28}$, $y = \frac{1}{4}$
(viii) $\frac{3}{5}x + \frac{2}{5} = 1$
 $3x + 2 = 5$, $3x = 5 - 2$, $3x = 3$, $x = 1$
(ix) $4y - 2 = \frac{1}{5}$
 $4y = \frac{1}{5} + 2$, $4y = \frac{1 + 10}{5}$, $4y = \frac{11}{5}$, $y = \frac{11}{20}$
(x) $\frac{x}{2} + \frac{x}{4} = 12$
 $2x + x = 48$, $3x = 48$, $x = 16$
(xi) $\frac{2}{5}z = \frac{3}{8}z + \frac{7}{20}$
 $\frac{2}{5}z - \frac{3}{8}z = \frac{7}{20}$, $\frac{16z - 15z}{40^2} = \frac{7}{20}$, $z = 2 \times 7$, $z = 14$
(xii) $\frac{2}{5}y - \frac{5}{8}y = \frac{5}{12}$
 $\frac{16y - 25y}{40^{10}} = \frac{5}{12}$, $-9y \times 3 = 50$, $y = -\frac{50}{27}$

(xiii)
$$3x + 2 (x + 2) = 20 - (2x - 5)$$

 $3x + 2x + 4 = 20 - 2x + 5$, $5x + 2x = 25 - 4$, $7x = 21, x = 3$
(xiv) 13 $(y - 4) - 3 (y - 9) = 5 (y + 4)$
 $13y - 52 - 3y + 27 = 5y + 20$, $10y - 5y = 20 + 25$, $5y = 45$, $y = \frac{45}{5}$, $y = 9$
(xv) $(2z - 7) - 3 (3z + 8) = 4z - 9$
 $2z - 7 - 9z - 24 = 4z - 9$, $-7z - 4z = -9 - 31$, $-11z = -40$, $z = \frac{40}{11}$
(xvi) 4 $(2y - 3) + 5 (3y - 4) = 14$
 $8y - 12 + 15y - 20 = 14$, $23y = 14 + 32$,
 $23y = 46$, $y = \frac{46^2}{23}$, $y = 2$
(xviii) $\frac{x}{2} - \frac{x}{3} = \frac{x}{4} + \frac{1}{2}$
 $\frac{3x - 2x}{6} - \frac{x}{4} = \frac{1}{2}$, $\frac{x}{6} - \frac{x}{4} = \frac{1}{2}$, $\frac{2x - 3x}{12^6} = \frac{1}{3}$, $-n = 6$, $n = -6$
(xviii) $z - \frac{2z}{3} + \frac{3}{2} = 5$
 $\frac{3z - 2z}{3} = 5 - \frac{3}{2}$, $\frac{z}{3} = \frac{10 - 3}{2}$, $2z = 7 \times 3$, $z = \frac{21}{2}$
(xix) $\frac{6y + 1}{2} + 1 = \frac{7y - 3}{3}$, $3 (6y + 3) = 2 (7y - 3)$, $18y + 9 = 14y - 6$
 $18y - 14y = -6 - 9$, $4y = -15$, $y = \frac{-15}{4}$
(xx) $\frac{6x - 2}{5} = \frac{2x - 1}{3} - \frac{1}{3}$, $\frac{3 (6x - 2) - 5 (2x - 1)}{15^5} = \frac{-1}{3}$, $18x - 6 - 10x + 5 = -5$, $8x = -5 + 1$, $8x = -4$, $x = \frac{-4}{8}$, $x = \frac{-1}{2}$
(xii) $\frac{Z - 1}{3} = \frac{1 + Z - 2}{4}$
 $4 (Z - 1) = 3 (Z - 1)$, $4Z - 4 = 3Z - 3$, $4Z - 3Z = 4 - 3$, $Z = 1$
(xiii) $\frac{Z - 1}{3} = \frac{3}{10} (5x - 12)$
 $10 (2x - 3) = 3 (5x - 12)$, $20x - 30 = 15x - 36$, $20x - 15x = 36$, $20x - 15x = 30 - 36$, $5x = -6, x = \frac{-6}{5}$
(xxiii) $3 (y - 3) = 5 (2y + 1)$
 $3y - 9 = 10y + 5$, $3y - 10y = 9 + 5$, $-7y = 14$, $y = \frac{-14}{7}$, $y = -2$

(xiv)
$$0.6x + 0.8 = 0.28x + 1.16$$

 $0.6x - .28x = -0.8 + 1.16$, $0.32x = 0.36$, $x = \frac{0.56^9}{0.32^8} = \frac{9}{8}$
7. (i) $5x - 3 = 3x + 5$
 $5x - 3x = 3 + 5$, $2x = 8, x = 4$
(ii) $3(y-1) = y - 11$
 $3y - 3 = y - 11$, $3y - y = 3 - 11$, $2y = -8, y = -4$
(iii) $4x - \frac{1}{5} = 7$
 $4x = 7 + \frac{1}{5}$, $4x = \frac{35 + 1}{5}$, $4x = \frac{36}{5}$, $x = \frac{36^9}{20^5}$, $x = \frac{9}{5}$
(iv) $\frac{4}{5}x - \frac{1}{6} = \frac{9}{2} - 2x$
 $\frac{4}{5}x + 2x = \frac{9}{2} + \frac{1}{6}$, $\frac{4x + 10x}{5} = \frac{27 + 1}{6}$, $\frac{14^4}{5} = \frac{28^2}{6^3}$, $x = \frac{5}{3}$
(v) $7 - 2(5 - 3x) = 4(x - 3) + 5$
 $7 - 10 + 6x = 4x - 12 + 5$, $6x - 4x = -7 + 3$, $2x = -4, x = -2$
(vi) $\frac{3x - 2}{2x + 1} = \frac{4}{5}$, $15x - 10 = 8x + 4$, $15x - 8x = 10 + 4$, $7x = 14, x = 2$
(vii) $\frac{1 - x}{6} + \frac{2x}{3} - \frac{1 - 7x}{4} = 2\frac{1}{6}$
 $\frac{2 - 2x + 8x - 3 + 21x}{12^2} = \frac{13}{6}$, $\frac{27x - 1}{2} = 13$, $27x - 1 = 26$, $27x - 1 = 26$, $x = 1$
(viii) $0.6x + \frac{4}{5} = 0.28x + 1.6$
 $0.6x - 0.28x = 1.6 - \frac{4}{5}$, $0.32x = 1.6 - 0.8$, $0.32x = 0.8$, $x = \frac{0.80}{0.32}x = \frac{80^{14^2}}{32^4^2}$, $x = \frac{5}{2}, x = 2.5$

Chapter-8

Exercise = 8.1

1. (i) 3:8 (ii) 24:73 (iii) 6:11 (iv) 3:12
(v)
$$\frac{65 \text{ paise}}{5 \text{ rupees}}$$

 $= \frac{65 \text{ paise}}{5 \times 100 \text{ paise}} = \frac{65^{13}}{560^{100}} = 13:100$
(vi) 12 m to 85 cm
 $= \frac{12m}{85 \text{ cm}} = \frac{1260^{240} \text{ cm}}{85^{17} \text{ cm}} = 240:17$

(31)

2. (i) 2:5 or 3:7

$$= \frac{2}{5} \times \frac{7}{7} = \frac{14}{35} = \frac{3}{7} \times \frac{5}{5} = \frac{15}{14} = \frac{15}{14} > \frac{14}{14} > \frac{14}{35}$$

$$\frac{3}{7} 3:7 \text{ is greater}$$
(ii) 4:5 or 5:6

$$\frac{4}{5} \times \frac{6}{6} = \frac{24}{30} = \frac{5}{6} \times \frac{5}{5} = \frac{25}{30} = \frac{25}{30} > \frac{24}{30}$$

$$\frac{5}{6} > \frac{4}{5} :6 \text{ is greater}$$
(iii) 6:11 or 9:14

$$\frac{6}{11} \times \frac{14}{14} = \frac{84}{154} = \frac{9}{14} \times \frac{11}{11} = \frac{99}{154}$$

$$\frac{99}{154} > \frac{84}{154} = \frac{9}{14} \times \frac{6}{11} = 9:14 \text{ is greater.}$$
(iv) 1:4 or 6:36

$$\frac{1}{4} \times \frac{6}{36} = \frac{36}{144} = \frac{6}{36} \times \frac{4}{4} = \frac{24}{144} = \frac{36}{144} > \frac{24}{144}$$

$$\frac{1}{4} > \frac{6}{36} = 1:4 \text{ is greater.}$$
3. (i) 18:12 = $\frac{18^3}{152} = 3:2$
(ii) $\frac{2}{3}:\frac{5}{6} = \frac{2}{1}:\frac{5}{2} = 4:5$
(iii) 7:3 $\frac{1}{2} = 7:\frac{7}{2} = 14:7 = 2:1$
(iv) $3\frac{1}{2}:1\frac{3}{4} = \frac{7}{2}:\frac{7}{4} = \frac{1}{2}:\frac{1}{4} = 2:1$
4. (i) $5:7 = \frac{5}{7} \times \frac{2}{2} = \frac{10}{14} = 10:14$
(ii) $3:11 = \frac{3}{11} \times \frac{2}{2} = \frac{6}{22} = 6:22$
5. $\frac{12}{20} = \frac{5}{15} = \frac{19}{152}$
6. Sum of ratios $= \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{6+4+3}{12} = \frac{13}{12}$
I part (ratio $\frac{1}{2}$) $= \frac{1}{2} + \frac{13}{12} \times 260 = \frac{1}{2} \times \frac{12}{3} \times 260^{20} = 120$
II part (ratio $\frac{1}{3}$) $= \frac{1}{3} \times \frac{12^3}{13} \times 260^{30} = 60$
120, 80, 60 Rs.
7. Length of line = 1m, = 100 \text{ cm}
Let, the first part = x cm, second part $= \frac{2}{3} \times \text{ cm}$
 $x + \frac{2}{3} x = 100 \qquad \frac{3x+2x}{3} = 100 \qquad 5x = 300 \qquad x = \frac{300^{60}}{3}$
 $x = 60 \text{ cm}$
first part = 60 \text{ cm},
(32)

Second part = $\frac{2}{3} \times 60^{20} = 40 \text{ cm}$ Monthly salary $= 42,000 \, \text{Rs}.$ 8. Income tax $= 6,000 \, \text{Rs}.$ (i) Income to $\tan = \frac{42,000^7}{6,000} = 7:1$ (ii) Income tax to income = $\frac{6,000}{42.000^7} = 1:7$ (iii) No Ans. Divyank performance = $\frac{50}{60}$ = 5:6 9. Rahul performance $=\frac{60^3}{80^4}=3:4$ $\frac{5}{6} \times \frac{4}{4} = \frac{20}{24} \qquad \frac{3}{4} \times \frac{6}{6} = \frac{18}{24} \qquad \frac{20}{24} > \frac{18}{24} \frac{5}{6} > \frac{3}{4}$ Divyank performance is better. 10. Ratio of eraser and pencil = $\frac{80^4}{2 \times 100^5} = \frac{4^2}{18^5} = 2:5$ 11. Initial ratio = 5:6, Let the no. = x5-8 Dr. = y $\frac{x}{v} = \frac{5}{6}$ 6x = 5y (i) $\frac{x-8}{v-8} = \frac{4}{5}$ $5 (x-8) = 4 (y-8) \qquad 5x-40 = 4y-32$ $5 \times \frac{5y}{6} - 40 = 4y - 32$ $\frac{25}{6}y - 40 = 4y - 32$ $\frac{25}{6}y - 4y = 40 - 32$ $\frac{25y-24y}{6} = 8 \quad y = 6 \times 8 \quad y = 48 \quad 6x = 5y \quad x = \frac{5}{6}y = \frac{5}{6} \times 48^8 \quad x = 40$ No's 40 & 48 **12.** Let the age of A = x, the age of B = y $\frac{x}{y} = \frac{5}{7} \Longrightarrow \qquad 7x = 5y.....(i)$ $\frac{x-8}{y-8} = \frac{7}{13}$ 13(x-8) = 7(y-8)putting the value of x, $13\left(\frac{5y}{7}-8\right) = 7(y-8) \qquad \frac{65y-56}{7} = 7y-56$ 65y - 56 = 49y - 392 $65y - 56 = 49y - 392 \qquad 03y - 42y - 300 \\ 16y = -336 \qquad y = \frac{-336^{21}}{16} \qquad y = -21$ 65y - 49y = 56 - 392

13. Let the weight of Zince = x

$$\frac{305}{x} = \frac{5}{36} \qquad x = \frac{30 \cdot 5^{61} \times 3}{5}$$

$$x = 6 \cdot 1 \times 3 = 18 \cdot 3 \text{ gm}$$
14. Given ratio = 3:4:5, sum of ratio = 3+4+5=12
No of `1 coins = $\frac{3}{12} \times 187$
15. 2A = 3B = 4C A : B : C = 2:3:4
16. A : B = 5:6 ... (i) B : C = 8:9 ... (ii)
Equation ... (i) × 4 & equation ... (ii) × 3
A : B = 20:24 B : C = 24:27 A : B : C = 20: 24: 27
17. $x: y = 8:9 \Rightarrow \frac{x}{y} = \frac{8}{9}$
 $(7x - 4y): (3x + 2y) = \frac{7x - 4y}{3x + 2y}$
 $= \frac{7x - 4y}{\frac{3x + 2y}{y}} = \frac{7x}{\frac{3x}{y} + 2} = \frac{7 \times \frac{8}{9} - 4}{3 \times \frac{8}{9} + 2}$
 $= \frac{56 - 36}{24 + 18} = \frac{29^{10}}{42^{21}} = 10: 21$

Exercise = 8.2

1. (i) 33, 44, 66, 88
33 :
$$44 = \frac{33}{44} = \frac{3}{4} = 3 : 4$$
 66 : $88 = \frac{66^{6^3}}{88^{8^4}} = \frac{3}{4} = 3 : 4$
33: $44 = 66$: 88 proportion.
(ii) 46, 69, 69, 46
46 : $69 = \frac{46^2}{69^3} = \frac{2}{3} = 2 : 3$ 69 : $46 = \frac{69^3}{46^2} = \frac{3}{2} = 3 : 2$
Not proportion.
(iii) 72, 84, 186, 217
72: $84 = \frac{72^6}{84^7} = 6 : 7$ 186 : $217 = \frac{186^2}{217^{31}}$
not proportional.
2. (i) $x : 19 :: 142 : 7$
 $19 \times 142 = x \times 7$ $x = \frac{19 \times 142}{7}$ $x = \frac{2698}{7}$
(ii) 21 : 35 :: 33 : x
 $21 \times x = 35 \times 33$ $x = \frac{35^5 \times 33^{11}}{21^3}$ $x = 55$

(iii) 196 : *x* :: *x* : 1 $x \times x = 196 \times 1$ $x^2 = 196$ $x = \sqrt{196}$ x = 14(i) $\frac{1}{4} \& \frac{1}{36}$ 3. $x^{2} = \frac{1}{4} \times \frac{1}{36}$ $x = \sqrt{\frac{1}{4} \times \frac{1}{36}}$ $= \frac{1}{2} \times \frac{1}{6}$ $x = \frac{1}{12}$ (ii) 3.6 & 0.9 $x^{2} = 3.6 \times 0.9$ $x = \sqrt{3.6 \times 0.9}$ $= \sqrt{36 \times 0.09}$ $= 6 \times 0.3$ x = 1.84. Let the third pro = x $4 \times x = 12 \times 12 \qquad x = \frac{12 \times 12^3}{4} \qquad x = 36$ 4, 12, 12 x 1000 m, 500m, nm, 300 m $500 \times n = 1000^2 \times 300$ x = 600 m 5. (i) 8, 36, 6, x $8 \times x = 36 \times 6$ $x = \frac{36^9 \times 6^3}{8^2}$ x = 27(ii) 5, 7, 30, *x* $5x = 7 \times 30 \qquad x = \frac{7 \times 30^6}{5} \qquad x = 42$ (iii) 2.8, 14, 3.5, *x* $2.8 \times x = 14 \times 3.5 \ x = \frac{14 \times 3.5}{3.8} \qquad x = 14.5$ Let the also is x 6. (23-x)(108-x) = (40-x)(57-x) $2484 - 23x - 108x + x^2 = 2280 - 40x - 57x + x^2$ $-13\,lx + 97x = 2280 - 2484 \qquad -34x = -204 \qquad x = \frac{-204^6}{-34} \qquad x = 6$ 7. 2 cm = 100 km $1 \text{ cm} = \frac{100}{2} \text{ km} = 50 \text{ km}$ $5 \text{ cm} = 5 \times 50 \text{ km} = 250 \text{ km}$ Let the also $d^r = x + 12$ 8. $d^2 = x$ $\frac{x+12}{x-2} = \frac{1}{2} \qquad 2(x+12) = x-2 \qquad 2x+24 = x-2 \qquad 2x-x = -24-2$ = -26 + 12 = -14 $d^r = x = -26$ $0^r = x + 12$ Original fractions = $\frac{-26}{14} = \frac{26}{14}$

Exercise = 8.3

1. Cost of 20 chocolates = 340 RsCost of 1 chocolates = $\frac{340^{17}}{20} = 17 \text{ Rs}$

Cost of 35 chocolates = 17×35 $= 595 \, \text{Rs}.$ 2. Distance taken by 15 lit = 150 kmDistance taken by 1 lit = $\frac{150^{10}}{15}$ = 10 km Distance taken by 90 lit = $90 \times 10 = 900$ km Earns money in 15 days = 7500 Rs3. Earns money in 1 days = $\frac{7500}{15}$ = 500 Rs Earns money in 28 days = $28 \times 500 = 14000 \text{ Rs}$ Shadow of 5 m height = 7.5 m 4. Shadow of 1 m height = $\frac{75}{5}^{1.5}$ = 1.5 m Height of the building = $\frac{97.5}{15} = 65 \text{ m}$ Do it yourself. 5. Paid of 15 days = 1815 Rs6. Paid of 1 days = $\frac{1815}{15}$ = 121 Rs Paid of 8 days = $8 \times 121 = 968 \text{ Rs}$ 7. Cost of 15 envelopes = 37.50 RsCost of 1 envelopes = $\frac{37.50}{15}$ = 2.5 Rs Cost of 20 envelopes = $20 \times 2.5 = 50$ Rs No. of envelopes = $\frac{300}{25}$ = 150 Colonies in 20 grams cheque = 908. Colonies in 1 grams cheque = $\frac{90}{20}$ = 4.5 Colonies in 70 grams cheque = $4.5 \times 70 = 315$ 9. Charges of 2 hours = 62 RsCharges of 1 hours = $\frac{62}{2}$ = 31Rs Changes of 18 hours = $18 \times 31 = 558$ **10.** Computers for 6 students = 63Computers for 1 students = $\frac{\mathcal{X}}{\beta^2}$ Computers for 24 students = $\frac{1}{2} \times 24 = 12$ 11. 8 men dig a well = 18 days 1 men dig a well = $\frac{18^9}{8}$ days

(36)

12 men dig a well =
$$12^3 \times \frac{9}{4}$$

= 27 days

12. Do it yourself.

Chapter-9 : Percentage, Profit and Loss, Simple Interest

Ex	ercise = 9.1
1.	(i) $2\frac{3}{4} = \frac{11}{4}$
	$= \frac{11}{4} \times \frac{100}{100} = \left(\frac{11}{4} \times 100^{25}\right) \times \frac{1}{100} = 275\%$
	(ii) $6\frac{1}{2} = \frac{13}{2}$
	$=\frac{13}{2}\times\frac{100}{100}=\left(\frac{13}{2}\times100^{50}\right)\times\frac{1}{100}=650\%$
	(iii) $\left(\frac{1}{5} \times \frac{100}{100}\right)$
	$= \left(\frac{1}{5} \times 100^{20}\right) \times \frac{1}{100} = 20\%$
	(iv) $\left(\frac{4}{20} \times 100^5\right) \times \frac{1}{100} = 35\%$
	(v) $2\frac{1}{4} = \frac{9}{4}$
	$=\left(\frac{9}{4} \times 100^{25}\right) \times \frac{1}{100} = 225\%$
	$(vi)\left(\frac{44}{100} \times 100\right) \times \frac{1}{100} = 94\%$
2.	(i) $0.34 = \frac{0.34}{100} = 34\%$ (ii) $2.3 = \frac{2.3}{10} = \frac{23}{100} \times 10 = 230$
	(iii) $0.2 = \frac{0.2}{10} = \frac{2}{100} \times 10 = 20\%$ (iv) $0.029 = \frac{0.029}{1000} = \frac{29}{100} \times \frac{1}{10} = \frac{29}{10}\% = 2.9\%$
	(vi) $0.009 = \frac{0.009}{1000} = \frac{9}{100} \times \frac{1}{10} = \frac{9}{10} \% = 0.9\%$
3.	(i) $\frac{25}{10} = \frac{25}{100} \times 10 = 250\%$
	(ii) $12:5 = \left(\frac{12}{5} \times 100^{20}\right) \times \frac{1}{100} = 240\%$
	(iii) $13:50 = \left(\frac{13}{50} \times 100^2\right) \times \frac{1}{100} = 26\%$
	(iv) $4: 20 = \left(\frac{4}{20} \times 100^5\right) \times \frac{1}{100} = 20\%$
	(37)

(v)
$$17: 25\left(\frac{17}{25} \times 160^4\right) \times \frac{1}{100} = 68\%$$

(vi) $35: 10 = \left(\frac{35}{16} \times 160^{10}\right) \times \frac{1}{100} = 350\%$
(vii) $2.25\% = \frac{225}{1000} 9 = \frac{9}{400}$
4. (i) $55\% = \frac{55}{100} 11 = \frac{11}{20}$
(iii) $475\% = \frac{47.5}{1000} 9 = \frac{19}{40}$
(v) $8\frac{1}{3}\% = \frac{25}{3}\% = \frac{25}{3 \times 100^4} = \frac{1}{12}$
5. (i) $33\% = \frac{33}{100} = 0.33$
(iii) $3.25\% = \frac{3.25}{100} = 0.0325$
(v) $145\% = \frac{145}{100} = 1.45$
6. (i) $4\% = \frac{4}{100} \frac{3}{50} = 125$
(iii) $32\% = \frac{32}{100} 8 = 8:25$
(v) $0.36\% = \frac{0.36}{100000} 9 = 9:2500$

(ii)
$$46\% = \frac{46}{100} \sum_{50}^{23} = \frac{23}{50}$$

(iv) $160\% = \frac{160}{100} = \frac{8}{5}$

(ii)
$$1.2\% = \frac{12}{100} = 0.012$$

(iv) $0.75\% = \frac{0.75}{100} = 0.0075$
(vi) $200\% = \frac{200}{100} = 2.0$

(ii)
$$5\frac{1}{4}\% = \frac{21}{4}\% = \frac{20}{4 \times 100_5} = 21:400$$

(iv)
$$6\frac{2}{3}\% = \frac{20}{3}\% = \frac{20}{3 \times 100^5} = 1:15$$

(vi)
$$0.005\% = \frac{0.005}{100000}_{20000} = 1:20000$$

Exercise = 9.2

1. (i) Percentage =
$$\frac{1}{4} \times 100^{25} - 25\%$$

(iii) Percentage = $\frac{4}{6_3}^2 \times 100 = \frac{200}{3}\%$ (iii) (v) Percentage = $\frac{1}{3} \times 100 = \frac{100}{3}\%$
2. (i) 15% of 200 m = $200 \times \frac{15}{100} = 30\%$ (iii) $5\frac{1}{2}\%$ of 1200 Rs = $1200^{600} \times \frac{11}{2} = 6600\%$

(iv) 4% of 50 $l = 50 \times \frac{4}{100_2} = 2\%$

(ii) Percentage
$$\approx \frac{4}{8} \times 100^{50} = 50\%$$

(iv) Percentage $= \frac{2}{6_3} \times 100 = \frac{100}{3}\%$

(ii) 24% of 500 kg =
$$500 \times \frac{24}{100} = 120\%$$

(v) 75% of 40 km =
$$240 \times \frac{75}{5100}^{15} = 30\%$$

(vi) 65% of 540 =
$$540 \times \frac{65}{100_2}^{15} = 27 \times 15 = 405\%$$

3. (i)
$$15 \text{ of } 45 = \frac{15}{4\xi_3} \times 100 = \frac{100}{3} \%$$

(ii) $25 \text{ paise of } 10 = \frac{25}{1000} \times 100 = 25\%$
(iii) $\frac{300 \text{ gm}}{6 \text{ kg}} \times 100 = \frac{300}{6000^2} \times 160^5 = 5\%$
(iv) $18 \text{ hrs of } 4 \text{ days} = \frac{18^3}{4 \times 24^4} \times 160^{25} = \frac{75}{4} \%$
(v) $3\frac{1}{2} \text{ m of } 4\frac{1}{5} \text{ m} = \frac{7}{2} \times \frac{5}{34} \times 100^{20} = \frac{250}{3} \%$
(vi) $90 \text{ cm of } 1.5 \text{ m} = \frac{390}{159} \times 1602^{20} = 60\%$
4. (i) Let total = x
 $x \times \frac{7}{100} = 126$ $x = \frac{126 \times 100}{75}$ $x = 1800$ $1800 \times \frac{30}{100} = 540$
(ii) $x \times \frac{11}{100} = 176$
 $x = \frac{176 \times 100}{11}$ $x = 1600$ $1600 \times \frac{72}{100} = 16 \times 72 = 1152$
(iii) $5\% \text{ of } 48\% \text{ is } 216$
 $x \times \frac{48}{100} = 216$ $x = \frac{2164^{18} \times 160^{23}}{48^4}$ $x = 450$ $450 \times \frac{5}{160^2} = \frac{40}{2}$
(iv) $x \times \frac{90}{100} = 1890$ $x = \frac{1890^{21} \times 160}{90}$ $x = 210$ $210 \times \frac{15}{160_2} = \frac{63}{2}$
5. (i) $\frac{60}{660}$ $^{10} \times 100 = 10\%$
(ii) $\frac{50}{259_3} \times 160^{23} = 20\%$
(iii) $\frac{8}{2 \times 24^3} \times 160^{29} = \frac{50}{3} \%$
(iv) $x = \frac{64 \times 100^4 \times 2}{25} = 64 \times 8 = 512$
(iii) $x = \frac{64 \times 100^4 \times 2}{8^4} = 64 \times 8 = 512$
(iii) $x = \frac{64 \times 100^4 \times 2}{8^4} = 75$
7. 10% more than $90 = \frac{16}{100} \times 90 = 9 \text{ Rs.}$
8. 20% less than $60 = \frac{29}{100} \times 60^{12} = 12 \text{ Rs.}$
9. Rahul get the money $= \frac{2}{10^3} \times 500^{100} = 100 \text{ Rs.}$
 $\psi = \frac{160^{20}}{500} \times 100 = 20\%$

Sonu get the money = $\frac{3}{50} \times 100 = \frac{3}{10} \times 500\% = 150$ Rs. $\% = \frac{150^{30}}{500} \times 100 = 30\%$ 10. Seeta get are check = $20 \times \frac{20}{100} = 4$ Geeta get are check = $20 \times \frac{80}{100} = 16$ 11. Students were spices $=\frac{20}{190} \times 45^\circ = 9$ Students do net were spices = 45 - 9 = 3612. No. of eggs are notten = $60^{20} \times \frac{50 \times 100}{3 \times 100} = 10$ 13. No. of waters who did not note = $15000 \times \frac{40}{100} = 6000$ 40% did not water. 14. Salary = $400 \times \frac{109}{18} = 4000$ **15.** Sames the money = 15000 - 8200 = 6800 $\% = \frac{6800}{15000} \times 100 = \frac{680}{15} = \frac{136}{3} \%$ 16. Let the original price = xReduced price = 245.10 $x - x \times \frac{14}{100} = 245.10$ 100x - 14x = 24510 86x = 24510 $x = \frac{2450}{86}^{1225}$ $x = \frac{1225}{43}$ 17. Let No. of students = x $x \times \frac{40}{100} = 480$ $x = \frac{480 \times 100}{40}$ x = 120018. % increasing = $\frac{1}{5} \times 100^{20} = 20\%$ **19.** % of price gone up = $\frac{47}{1} \times 100 = 4700\%$ Exercise = 9.3 (i) C.P = 55501. S.P. = 6070Profit = 6070 - 5550 = 520 Rs.(ii) C.P = 7670S.P. = 7000Loss = 7670 - 7000 = 670S.P. = 600 (iii) C.P = 593

Profit = 600 - 593 = 7 Rs.

(40)

(iv) C.P = 2600 S.P. = 2300
Loss = 2600 - 2300 = 300 Rs.
2. (i) CP = 24, Profit = 4

$$\% = \frac{4}{24_{A3}} \times 160^{50} = \frac{50}{3}\%$$

(ii) CP = 840 Rs. Profit = 36 Rs.
 $\% = \frac{36}{8407}^3 \times 100 = \frac{30}{7}\%$
(iii) CP = 150, Loss = 12
 $\% = \frac{12}{1393}^4 \times 160^2 = 8\%$
(iv) CP = 230, Loss = 8
 $\% = \frac{8}{230} \times 100 = \frac{80}{23}\%$
3. (i) $\% = \frac{260}{2660} \times 100 = 10\%$
(ii) $\% = \frac{146}{3650^{53}} \times 190^2 = \frac{146}{53}\%$
4. C.P. = 1500 + 100 = 1600 Rs.
S.P. = 150 × 1.20 = 800 Rs.
 $\%$ of gain = $\frac{200}{1600} \times 160^{25} = \frac{28}{2}\% = 12.5\%$
5. $\%$ of profit = $\frac{2}{8_4} \times 160^{25} = 25\%$
6. C.P. of 3600 bananas = 300 × 16 = 4800
S.P. = 1850 × 2 = 3700 Rs.
= 3700 + 2800 = 6500
Profit = S.P. - C.P. = 6500 - 4800 = 1700 Rs.
 $\% = \frac{1700}{4800} \times 100 = \frac{17 \times 100}{48} = 35.42\%$
7. C.P. = 50 Rs. S.P. = $\frac{96}{12} \times 8.50 = 68$
Profit = 68 - 50 = 18
 $\% = \frac{18}{50} \times 160^2 = 36\%$
8. Let the cost of a books = x
C.P. = 15x S.P. of = 1 book = $\frac{15x}{12}$

 $\frac{4x}{2} \qquad \% = \frac{\frac{15x}{121} \times 100}{x} = 125\%$ S.P. = 10000 + $\frac{29 \times 2000}{109^5} = 12000$ Rs.

% = 20%

9. C.P. = 10000 Rs.

10. S.P. = 1332 Rs. % = 7.5% C.P. = 1332
$$-\frac{7.5 \times 1332}{100}$$

= 1332 - 99.90 = 12321
11. (i) C.P. = 750 Rs.
 14% S.P = $\frac{750 + 14 \times 750}{100}$ = 750 + 105.00 = 855 Rs.
(ii) 6% Loss
S.P. = 750 $-\frac{6 \times 750}{100}$ = 750 - 45 = 705 Rs.
12. Let, C.P. = x Rs. % = 15%
C.P. = 600 - x $\times \frac{15}{100}$
 $10x = 60000 - 15x$ $100x + 15x = 60000$ $115x = 60000$
 $x = \frac{60000}{115}$ $x = 51174$ Rs.
13. C.P. = 24 × 450 = 10800 Rs.
S.P. = 16 × 600 + 8 × 400 = 9600 + 3200 = 12800 Rs.
Profit = 12800 - 10800 = 2000 Rs.
 $\% = \frac{200}{10800} \times 100 = 18.5\%$
14. S.P. = 3220 Rs. Gain = $\frac{1}{6}x$
 $x = 3220 - \frac{1}{6}x$ 6x = 19320 - x 7x = 19320 $x = 2760$
 $\frac{1}{-x}$
 $\% = \frac{6}{-x} \times 100 = 16.6\%$
15. S.P. = 1080 Rs. C.P. = x Loss = 10%
C.P. = 1080 + 080 $\times \frac{10}{100} = 1108$ Rs.
S.P. = 1108 + 1108 $\times \frac{25}{4} \times 190^4 = 1108 + 69.25 = 1177.25$ Rs.
16. S.P. = 600 Rs.
Let, S.P. of Dind bed sheet = x
S.P. of IInd bed sheet = $600 - x$
Gain = 20% C.P. = $x - x \times \frac{20}{190^2} = \frac{4x}{5}$
Loss = 25% C.P = (600 - x)
Exercise = 9.4
1. (i) S.I = $\frac{R}{-x} \times T \times P = \frac{5}{-x} \times 5 \times 2008 = 25 \times 20 = 500$ Rs

1. (i) S.I. =
$$\frac{R}{100} \times T \times P = \frac{5}{100} \times 5 \times 2000 = 25 \times 20 = 500 \text{ Rs.}$$

(42)

(ii) S.I. =
$$500 \times 4 \times \frac{124}{106} = 20 \times 125 = 250$$

(iii) S.I. = $\frac{4k^2}{100} \times 4506 \times \frac{1}{2} = 90 \text{ Rs.}$
(iv) S.I. = $12000 \times \frac{1}{3} \times \frac{18^6}{100} = 720 \text{ Rs.}$
2. (i) $R = \frac{S.I. = 100}{T \times P} = \frac{1100 \times 100}{2 \times 8250} = \frac{11000}{2 \times 8250} = 266\%$
(ii) $R = \frac{975 \times 1089 \times 2}{5206 \times 5} = \frac{1950}{260} = 7.5\%$
3. (i) $T = \frac{S.I. \times 100}{R \times P} = \frac{869 \times 109}{5 \times 8690} = 2 \text{ years}$ (ii) $T = \frac{256^3 \times 109}{40060 \times 5} = \frac{5}{4} \text{ years}$
4. $T = \frac{4^{60} 609 \times 109}{6^3 \times 1590} = \frac{20}{3} \text{ years}$
5. $P = 5500 \text{ Rs}$ $R = 12\%$ $T = \frac{72}{365}$
S.I. $= \frac{R}{100} \times P \times T = \frac{12}{100} \times 5500 \times \frac{72}{365} = 13019$
Total money = $5500 + 13019 = 563019 \text{ Rs.}$
6. S.I. $= \frac{R}{100} \times P \times T = \frac{8}{100} \times 4500 \times \frac{73}{65} = 72 \text{ Rs.}$
7. $P = ?$
S.I. $= \frac{R}{100} \times P \times T$
 $P = \frac{S.I. \times 100}{KT} = \frac{5525 \times 100}{40 \times 3} = \frac{55250}{3}$
 $P = 184166$
8. S.I. $= 3P$ S.I. $= \frac{R}{100} \times P \times T$ $3P = \frac{R}{100} \times P \times 16$
 $R = \frac{3 \times 100}{10}$ $R = 1875\%$
9. $T = 2 \text{ years, } A = 5434 \text{ Rs. } R = \frac{9}{4}\%$ $P = ?$
S.I. $= \frac{R}{100} \times P \times T$ $5434 - P = \frac{9}{4 \times 100} \times P \times 2$
(5434 $- P$) 400 = 18P 5434 $\times 400 = 400P + 18P$
 $418P = 5434 \times 400$ $P = \frac{5434 \times 400}{418}P = 5200 \text{ Rs.}$
10. $R = \frac{S.I. \times 100}{R \times T} = \frac{\frac{-1}{4} \times P \times 100}{P \times 1}$ $P = 25\%$
(43)

$$S.I. = \frac{25}{100} \times 60000 \times 2 = 50 \times 600 = 30000$$
$$A = P + S.I. = 60000 + 30000 = 90000$$
$$P = \frac{S.I. \times 100}{R \times T} = \frac{4230 \times 100 \times 2}{7 \times 5}$$
$$P = 2417143 \text{ Rs.}$$

12. $P = 12000 \, \text{Rs.}$

$$S.I. = \frac{18}{100} \times 2000 \times 3 + 10,000 \times \frac{15}{100} \times 3$$

$$= 18 \times 60 + 4500 = 1080 + 4500 = 5580 \,\mathrm{Rs}$$

13. $P = 12000 \, \text{Rs.}$

S.I. = $\frac{8}{100} \times 12000 \times 6 = 8 \times 120 \times 6 = 5760$ Rs. 5760 = cost of T.V. + 15000 - 12000

Cost of T.V. = 5760 - 3000 = 2760 Rs.

14. S.I. =
$$\frac{R}{100} \times P \times T$$

= $\frac{50}{100} \times 100 \times \frac{1}{2} = 300 \text{ Rs.}$

15. Ist condition S. I. = 96 Rs T = 34 Rs. R = 8% S. I. = $\frac{R}{100} \times P \times T$

Chapter-10 : Understanding Elementary Shapes

Exercise = 10.1

- 1. (i) $90-25=65^{\circ}$
 - (iii) $90 45 = 45^{\circ}$
- **2.** (i) $180 90 = 90^{\circ}$
- (iii) 180–158=22°
- 3. (i) $67^{\circ}+23 = 90^{\circ}$ complementary
 - (iii) 1+07+73 = 180, Supplementary.
 - (v) 125 + 55 = 180 supplementary.
- 4. (i) 1 and 2 are adjacent
 - (ii) 1 and 2 are adjacent.
 - (iii) 1 and 2 are not adjacent
 - (iv) 1 and 2 are not adjacent.
- 5. (i) and (ii) linear $140 + 40 = 180^{\circ}$
- 6. (i) b c z obtuse angles remain greater than 90° and linear angle is 180° .
 - (ii) b c z acute angles remain less than 90° and supplementary angle is 180°
 - (iii) b c z right angles said to be 90° so sum of true right angles is 180° .

- (ii) $90 69^\circ = 21^\circ$
- (iv) $90 80 = 10^{\circ}$
- (ii) 180–105=75
- (iv) $180 110^\circ = 70^\circ$
- (ii) 153 + 17 = 180, supplementary.
- (iv) 68+22=90 complementary.
- (vi) $42+48=90^{\circ}$ complementary.

Let the angles x and (180 - x)y7. x - y = 92x + y = 1802x = 272x = 136136 + y = 180y = 180 - 136 $y = 44^{\circ}$ 44°, 136° Let the Ist angle = x8. IInd angle = $x + 54^{\circ}$ x + x + 54 = 1802x = 180 - 542x = 126, x = 63 x + 54 = 63 + 54 = 117 $63^{\circ}, 117^{\circ}$ **9.** ratio = 5 : 4 5x + 4x = 1809x = 180, x = 20 $5x = 5 \times 20 = 180$ $4x = 4 \times 20 = 80$ 100, 80. 10. Let the angle = xx + x = 1802x = 180 $x = 90^{\circ}$. 11. (i) x = 75x + y = 18075 + y = 180y = 180 - 75 $y = 105^{\circ}$ (ii) $y = 110^{\circ}$ x = ?x + y = 180110 + x = 180x = 180 - 110 $x = 70^{\circ}$ **12.** $\angle POT = 75^{\circ}$ a, b, c = ?2C = a... (i) 2C = 75 + b...(2) 4b = a...(3) 4b + 75 + b = 1805b = 180 - 75 $5b = 105, b = 21^{\circ}.$ 4b = a $a = 4 \times 21$ $a = 82^{\circ}$ C = 82/22C = aC = a/2 $C = 41^{\circ}$ **13.** (i) 2x + 4x = 1806x = 180x = 180/6 x = 30(ii) 4x + x = 180 $x = \frac{180^{36}}{5}$ 5x = 180x = 36 $\angle BOC = 115^{\circ}$ **14.** $\angle AOB = 65$ $\angle COD = 100$ (i) $\angle AOD = ?$ $\angle AOB + \angle BOC + \angle COD + \angle AOD = 360^{\circ}$ $65 + 115 + 100 + \angle AOD = 360$ $\angle AOD = 360 - 280 = 80$ (ii) $\angle AOC = \angle AOB + \angle BOC = 65 + 115^\circ$, = 180 Yes (iii) $\angle BOD = \angle BOA + \angle AOD = 65 + 80 = 145$ No (iv) $\angle AOD = 100^{\circ}$, No $\angle DOA = 80$, No.

15. (i) $\angle AOD$ and $\angle EOC$ (ii) .	$\angle AOB$ and $\angle BOC$
---	-------------------------------

(iv) $\angle AOB$ and $\angle AOD$

- (iii) $\angle BOE$ and $\angle EOD$
- (v) $\angle AOE$ and $\angle EOD$

Exercise = 10.2

1. (i) $\angle 2$ and $\angle 8 \rightarrow$ corresponding (ii) $\angle 3$ and $\angle 7 \rightarrow$ alternate interior (iii) $\angle 1$ and $\angle 8 \rightarrow$ co-interior (iv) $\angle 4$ and $\angle 8 \rightarrow$ interion alternate (v) $\angle 2$ and $\angle 6 \rightarrow$ enterion alternate (vi) $\angle 1$ and $\angle 7 \rightarrow$ corresponding 2. From the figure $x^{\circ} = Z^{\circ}$ (corresponding) $\angle Z^{\circ} = 50^{\circ}$ (alternate interion) $\angle y^{\circ} = 60^{\circ}$ $x^\circ = 50^\circ$ (i) $x = 80^{\circ}$ (alternate interion) 3. (ii) $x = 100^{\circ}$ (corresponding) (iii) $x = 90^{\circ}$ (co-interion) $\angle 1 = 75$ $\angle 5 = ?$ $\angle 8 = ?$ $\angle 1 = \angle 5$ (alternate enterior), 4. $\angle 5 = 75$ $\angle 5 + \angle 8 = 180$ (linear) $\angle 8 = 180 - 75$ $\angle 8 = 105$ $\angle 1 = 65^{\circ}$ (alternate intenion), 5. $\angle 2 = 48^{\circ}$ $\angle 1 + \angle 2 = a$ a = 65 + 48 $a = 113^{\circ}$ To show, G.L. | | HM. 6. Prove→ $AB \mid CD$, $\angle LGB = \angle MHD$ (corresponding) $\angle EGL = \angle LGB$ $\angle GHM = \angle MHD$ $\angle EGL = \angle MHD - \angle LGB = \angle GHM$, Hence, GL | | HM Proved. 7. $\angle 2 = \angle 4 \quad \angle 1 = \angle 3$ $\angle 2 + 75 = 180 \quad \angle 2 = 180 - 75$ $\angle 2 = 105^{\circ}$ $\angle 4 = 105^{\circ}$ $\angle 4 + \angle 3 = 180 \quad \angle 3 = 180 - 105 \quad \angle 3 = 75^{\circ}$ $\angle 1 = 75$ $AB \mid CD$ $EF \mid GH$ 8. Hence ABCD is a perallehoghram $\angle x = \angle y \quad \angle x = 80^{\circ}$ $\angle y = 80^{\circ}$ 9. (i) $\angle 1 = 22, 60 = 60$ (alternate interior) Hence $l \mid m$ (ii) $\angle 1 + \angle 4 = 180$ $\angle 4 = 180 - 140$ $= 40^{\circ}$ $\angle 4 = \angle 2$ Hence, $l \parallel m$

(iii) *l* is not parallel to *m*. $(iv) \angle 4 + \angle 1 = 180$ $\angle 4 = 180 - 67$ $\angle 4 = 113$ $\angle 4 = \angle 3$ Hence $l \parallel m$ **10.** $\angle GEF = 58$ (i) $\angle ABC = \angle DEC = GER$ $\angle ABC = 58^{\circ}$ (ii) $\angle DGC = 58^{\circ}$ (iii) $\angle EGC + \angle DGC = 180$ $\angle EGC = 180 - 58 = 122$ **11.** Show *AB* || *EF* $\angle ABC = 60^{\circ}$ $\angle ECD = 30^{\circ}$ $\angle FEC = 150^{\circ}$ $\angle ECB = 30^{\circ}$ AB || CD $\angle ABC = \angle BCD$ AB || EF **12.** $\angle 2 = 120^{\circ}$ $\angle 5 = 60^{\circ}$ $\angle 5 + \angle 8 = 180$ $\angle 8 = 180 - 60$ $\angle 8 = 120$ $\angle 8 = \angle 2m \mid\mid n$

Chapter-11 : Properties of Triangles

Exercise = 11.1

1.	(i)	line-segment, m	nind point		(ii)	medium	
	(iii)	interior			(iv)	centroid	
	(v)	altitude perpend	dicular		(vi)	orthocentre	
	(vii)	vertex of the rig	ght angle.				
2.	(i)	$x + 70^{\circ} + (180 -$	$100) = 180^{\circ}$				
		x + 70 + 80 = 180	$0 \qquad x = 180$	-150 x	= 30		
	(ii)	x + 30 + (180 - 3)	80)=180				
		x + 30 + 100 = 1	80 x = 180	-130 x	= 50		
	(iii)	75 = 35 + x	x = 75 - 35	$x = 40^{\circ}$			
	(iv)	$110^{\circ} = 50 + x$	x = 110 - 50	x = 60			
	(v)	70 = x + 40	x = 70 - 40	x = 30			
	(vi)	110 = 50 + x .	x = 110 - 50	x = 60			
3.	(i)	$x = 50 + 50 \qquad x$	$=100^{\circ}$		(ii)	x = 30 + 60	$x = 90^{\circ}$
	(iii)	$x = 30 + 40 \qquad x$	$=70^{\circ}$		(iv)	x = 60 + 70	$x = 130^{\circ}$
	(v)	$x = 30 + 60 \qquad x$	= 90°		(vi)	x = 50 + 30	$x = 80^{\circ}$
4.	(i)	$6x + 8 = 67^{\circ} + 49^{\circ}$					
		6x = 116 - 8	6x = 108	$x = \frac{108^{18}}{6}$	<i>x</i> =	18	
	(ii)	11x + 5 = 12 - x +	65				
		1lx + 5 = 77 - x	1 lx + x = 77 -	5 12x =	= 72,)	c = 6	
	(iii)	4x + 80 = 60 + 60)				
		4x = 12 - 80	4x = 40	x = 10			
				(47))		

(iv)
$$90^{\circ} = 7x - 2 + 5x + 8$$

 $90^{\circ} = 12x - 6$
 $12x = 90 + 6$
 $12x = 96, x = 8$
(v) $60 - x = 6x - 3$
 $6x + x = 60 + 3$
 $7x = 63, x = 9$
(vi) $117 = 3x + 57$
 $3x = 117 - 57$
 $3x = 60, x = 20^{\circ}$

5. ratio = 3 : 5

 $3x + 5x = 120 \qquad 8x = 120 \qquad x = \frac{120^{15}}{8} \qquad x = 15$ $3x = 3 \times 15 = 45 \qquad 5x = 5 \times 15 = 75 \qquad \angle A = 45, \angle B = 75$ $\angle C = 180 - (\angle A + \angle B) = 180 - (45 + 75) = 180 - 120 = 40$

Exercise = 11.2

1. (i)
$$x + 112 + x = 180$$

 $2x = 180 - 112$ $2x = 168$ $x = 84$
(ii) $112^{\circ} + 60 + 3x + 9 = 180$
 $3x = 180 - 181$ $x = \frac{-1}{3}$
(iii) $60 + 60 + 8x + 60 = 180$
 $8x = 180 - 180$ $x = 0$
(vi) $58 + x + 2x = 180$
 $3x = 180 - 58$ $3x = 122$ $x = \frac{122}{3}$
(v) $30 + 90 + 19x + 3 = 180$
 $19x = 180 - 124$ $x = \frac{57}{19}$ $x = 3$
(vi) $7x - 4 + 6x - 4 + 5x + 8 = 180$
 $18x = 180$ $x = 10$
2. $\angle A = 45^{\circ}$, $\angle B = 75^{\circ}$,
 $\angle A + \angle B + \angle C = 180^{\circ} \angle C = 180 - 45 - 75$ $\angle C = 180 - 120 = 60$
3. $3 : 4 : 5$
 $3x + 4x + 5x = 180$ $12x = 180$ $x = \frac{180^{15}}{12}$ $x = 15$
 $3x = 3 \times 14 = 42$ $4x = 4 \times 14 = 56$ $5x = 5 \times 14 = 70$
4. $3\angle A = 4 < B = \angle C$
 $\angle A + \angle B + \angle C = 180$ $\angle A + \frac{3}{4}\angle A + \frac{1}{2}\angle A = 180$ $4\angle A + 3\angle A + 2\angle A = 180 \times 4$
 $9\angle A = 180 \times 4$ $\angle A = \frac{180^{20} \times 4}{9}$ $\angle A = 80$
 $\angle B = \frac{3}{4}\angle A, = \frac{3}{4} \times 80^{20} = 60^{\circ}$ $\angle C = \frac{1}{2}\angle A = \frac{1}{2} \times 80 = 40^{\circ}$

Exercise = 11.3

1.	(i)	1 · 8, 3 · 5, 6 (cm)	$1 \cdot 8 + 6 > 3 \cdot 5$	$1 \cdot 8 + 3 \cdot 5 \ge 6$	No.
	(ii)	1, 3, 2 (cm)	$1+2 \ge 3$	No.	
	(iii)	1.5, 2.5, 5 (cm)	$1 \cdot 5 + 2 \cdot 5 \ge 5$	No.	
	(iv)	5, 7, 12 (cm)	$5 + 12 \ge 7$	No.	
	(v)	$8 \cdot 5, 2, 5 (cm)$	$8 \cdot 5 + 2 > 5$	$2+5 \ge 8 \cdot 5$	No.
	(vi)	$3 \cdot 4 + 2 \cdot 1 > 5 \cdot 3$	$5 \cdot 3 + 2 \cdot 1 > 3 \cdot 4$	$3 \cdot 4 + 5 \cdot 3 > 2 \cdot 1$	Yes.
-			~		

- 2. No, we can bot draw $\triangle ABC$ b c z A, B, C are collinear (situated at a line)
- $BC = 15 \,\mathrm{cm},$ 3. $AB = 12 \,\mathrm{cm}$,
- AB + BC = 12 + 15 = 27 Third side should be less than 27° .
- 4. In ΔABC

AB + BC > AC $\mathrm{In}\,\Delta\,ADC$ AD + CD > BDso, AB + BC + AD + CD > AC + BD

5. In ΔABM

> AB + BM > AM...(i) $\ln \Delta AMC$ AC + MC > AM... (ii), equation (i) + (ii) AB + (BM + MC) + AC > AM + AMAB + BC + AC > 2AM

- (i) In $\triangle AOB$, OA + OB > AB ...(i) 6.
 - (ii) $m \Delta BOC, OB + OC > BC...$ (ii)
 - (iii) In $\triangle COA$, OC + OA > AC ...(iii)
 - (iv) equation (i) + (ii) + (iii) 2(OA+OB+OC) > AB+BC+AC
- (i) BD < AB + AD7. (ii) BD + CD > BD(iii) $BD < \frac{1}{2} (AB + BC + AC)$

Exercise = 11.4

- (i) $10^2 = 6^2 + 8^2 = 36 + 64, 100 = 100$, yes. 1. (ii) $11^2 = 5^2 + 8^2$, $= 25 + 64121 \neq 89$, No.
- $5 \text{ cm}, 12 \text{ cm}, H^2 = 5^2 + 12^2, = 25 + 144 = 169$ 2. $H = 13 \,\mathrm{cm}$
- $H^{2} = 800 \text{ cm}^{2}, H^{2} = x^{2} + x^{2}, 1800 = 2x^{2}, x^{2} = 400$ 3. $x = 20 \,\mathrm{cm}, 20 \,\mathrm{cm}, 20 \,\mathrm{cm}$
- Distance = $\sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \text{ km}$ 4.
- Third side = $\sqrt{40^2 + 41^2} = \sqrt{1600 + 1681} = \sqrt{3281} = 57 \cdot 28 \text{ cm}$ 5. Perimeter = $57 \cdot 28 + 40 + 41 = 138 \cdot 28$ cm

6. Distance between tope

$$d = \sqrt{15^{3} + 36^{2}} = \sqrt{225 + 1296} = \sqrt{1521} = 39 \text{ cm}$$
7. $D^{2} = 1250 \text{ cm}$ $AD^{2} = 625 \text{ cm}$ $BD = 30 \text{ cm}$ $OD = 15 \text{ cm}$
 $AD^{2} = 0A^{2} + OD^{2}$
 $AD^{2} = 8^{2} + 15^{2} = 64 + 225 = 289 \text{ AD} = 17 \text{ cm}$
9. $\angle C = 90^{9}$
 $AC = BC$
 $AB^{2} = AC^{2} + AC^{2}$
 $AB^{2} = 2AC^{2}$
10. Length of the street
 $= \sqrt{17^{2} - 8^{2}} + \sqrt{17^{2} - 15^{2}} = \sqrt{289 - 64} + \sqrt{289 - 225} = \sqrt{225} + \sqrt{64} = 15 + 8$
 $= 23 \text{ m}$
11. (i) $x^{2} = 8^{2} + 15^{2} = 64 + 225 = 289 \text{ } x = 17 \text{ cm}$
(ii) $x^{2} = 24^{2} + 7^{2} = 576 + 49 = 625 \text{ } x = 25 \text{ cm}$
(iii) $y^{2} = 5^{2} - 3^{2} = 25 - 9 = 16$, $y = 16 \text{ cm}$
 $x^{2} = 12^{2} - 3^{2} = 144 - 9 = 135 \text{ } x = \sqrt{135} \text{ } x = \sqrt{15} \text{ cm}$
(iv) $y^{2} = 37^{2} - 12^{2} = 1369 - 144 = 1225 \text{ } y = 35 \text{ cm}$
 $CD^{2} = 37^{2} - 12^{2} \text{ } CD = 35 \text{ } x = y + y = 35 + 35 = 70 \text{ cm}$
(ii) $6, 8, 10, 6^{2} + 8^{2} = 64 + 225 = 289 = 17^{2}$ Yes.
(ii) $6, 8, 10, 6^{2} + 8^{2} = 64 + 225 = 289 = 17^{2}$ Yes.
(ii) $6, 8, 10, 6^{2} + 8^{2} = 64 + 225 = 289 = 17^{2}$ No
(iv) $14, 48, 50, 14^{2} + 48^{2} = 196 + 2304 = 2500 = 50^{2}$ Yes
(v) $1, 2, 3, 1^{2} + 2^{2} = 1 + 4 = 5 \neq 3^{2}, \text{ No}$
(v) $20, 48, 52, 20^{2} + 48^{2} = 400 + 2304 = 2704 = 52^{2}$ Yes

Chapter-12 Congruence

Exercise = 12.1

1. (i) They are of equal lengths

- (ii) Their measures are equal
- (iii) They have the same side length
- (iv) Their dimensions are same
- (v) They have the same radius
- **2.** sin
- 3. (i) and (iii) are congruent
- 4. (i) $\Delta PQR \cong \Delta XYZ$ $P \leftrightarrow X$. $Q \leftrightarrow y$, $R \leftrightarrow Z$ PQ = XYPR = XZ QR = YZ $\angle P = \angle X$ $\angle Q = \angle Y \quad \angle R = \angle Z$ (ii) $\Delta PQR \cong \Delta YZX$ $Q \leftrightarrow Z$, $P \leftrightarrow Y$, $R \leftrightarrow X$ PO = YZ, PR = YXQR = XZ, $\angle P = \angle Y$, $\angle Q = \angle Z, \quad \angle R = \angle X$
- **5.** $\triangle ABC \cong \triangle FED$ $ABC \leftrightarrow FED$
 - $A \leftrightarrow F \qquad B \leftrightarrow E \qquad C \leftrightarrow D$ $\angle A = \angle F \qquad \angle B = \angle E \qquad \angle C = \angle D$ $AB = FE \qquad BC = ED \qquad AC = FD$
- 6. $\Delta DEF \cong \Delta BCA$ (i) $\angle E = \angle C$ (ii) EF = CA (iii) $\angle F = \angle A$ (iv) DF = BA

Exercise = 12.2

AC = PR = 3 cm1. (i) AB = PQ = 2 cmBC = QR = 4 cm $\Delta ABC \cong \Delta PQR$ $\angle N = \angle Y = 60^{\circ}$ (ii) MN = XY = 2 cm $\Delta MNO \cong \Delta XYZ$ (iii) AD = BC = 3 cm DC = AB = 5 cm AC = CA = 67 cm $\Delta ADC \cong \Delta ABC$ (iv) AE = DC = 5 cm AB = CB = 5.7 cm $\angle A = \angle C = 40^{\circ} \text{ cm}$ $\triangle ABE \cong \triangle DBC$ (v) $AD = AD, BD = DC = 3 \text{ cm} \ \angle D = \angle D = 90^{\circ}$ $\Delta ADB \cong \Delta ADC$ (vi) $OD = OB = 2 \text{ cm} \quad \angle D = \angle B = 100$ $\angle DOA = \angle COB$ $\Delta ADO \cong \angle BOC$ (vii) $\angle CAB = \angle DAB = 30 \ \angle CBA = \angle DBA \ \angle CAB \neq \angle CB \ \triangle ACB \cong \triangle ADB$ (viii) AB = AD = 3.6 cm $AC = AC \ \angle B = \angle D \Delta ABC \cong \Delta ADC$ (ix) AB = AC = 3 cm $\angle D = \angle D = 90^{\circ}$ $AD = AD \quad \Delta ADB \cong \Delta ADC$ (i) $\triangle ABC$: AB = 4 cm $BC = 5 \,\mathrm{cm}$ $CA = 3 \,\mathrm{cm}$, 2. $\Delta DEF : DE = 3 \text{ cm}$ EF = 4 cm FD = 5 cm, BC = FDAB = EFCA = DE $\Delta ABC \cong \Delta DEF$ (ii) PQ = EF $\Delta POR \cong \Delta DEF$ DR = DE(i) PS = RS, PQ = RQ3. PQ = RQ SQ = SQ $\Delta PQS \cong \Delta RQS$ PS = RS(ii) Yes (iii $\therefore \Delta PQS \cong \Delta RQS \quad \angle PQS = \angle RQS$ SQ is bisector of $\angle PQR$

4.
$$\angle Q = \angle N = 100 \quad \angle OQ = ON \quad \angle QOP = \angle NOM$$

 $\triangle MON \equiv \triangle PQO \angle ASQ$
5. $\angle A = \angle B = 90^{\circ} \quad BD = AC \quad AB = AB$ (i) $\triangle ABC \equiv \triangle BAD$
6. $2y+3=25$
 $2y=25-3 \quad 2y = 22 \quad y = \frac{32^{11}}{2} \quad y = 11$
 $3x-7=32$
 $3x=32+7 \quad 3x=39 \quad x = \frac{38^{13}}{3} \quad x = 13$
7. $AB = AC, BD = DC$
 $AB = AC, BD = DC$
 $AB = \Delta C D \quad \angle BAD = \angle CAD \quad \angle ADB = \angle AOC$
 $\angle ADB + \angle ADC = 180 \quad 2 \ \angle ADB = 180 \quad \angle ADB = 90^{\circ} \quad AD \perp BC$
 $AB = AC$
 $AD \perp BC$
 $AB = AC$
 $AD \perp BC$
 $AB = AC$
 $AB = DC$
 $B = D^{\circ}$
(i) Primeter of quare = 4 side
12. $\angle ABD = \angle DCA$
 $\angle ABC = \angle ACB = 40^{\circ}$
 $SO C = OA$

$$OA + OC = OD + OA \qquad AC = DA \qquad \angle ABC = \angle DCA$$

$$BC = BC \qquad \Delta ABC \cong \Delta DCB$$
13.
$$AB = BC = AC$$

$$\angle A = \angle B = \angle C$$

$$\angle A + \angle B + \angle C = 180$$

$$3 \angle A = 180$$

$$\angle A = \frac{180}{3}$$

$$\angle A = 60 \text{ each angle } 60^{\circ}$$
14.
$$AD = BE = CF$$

$$\angle B = \angle C = \angle A$$

$$AC = AB = BC$$

Hence $\triangle ABC$ is an equilateral triangle. proved

Chapter-13 Construction

Do your self

Chapter-14 Symmetry

Exercise = 14.1

- 1. Do your self
- **2.** (ii), (iv), (v) and (vi)
- **3.** (i) A, E, M (ii) H, I, X 4. F, G, N, P, Q
- 5. AY = 3 cm, YB = 4 cm, xz = 14 cm
- **6.** (i) $\angle BAO = 20^{\circ}$
 - (ii) $OC = 4 \cdot 5$ because the line of symmetry of the isosceles triangle is the angle bisector of $\angle A$ and also the median of $\triangle ABC$
- 7. If is a right angled isosceles triangle because every isosceles has a line of symmetry.

Exercise = 14.2

Do your self

Exercise = 14.3

1. (i) 5,72° (ii) 1,360° (iii) 3,120° (iv) 12,180°,

2.

Alphabet Letters	С	Е	Н	N	0	S	Z
Line of Symmetry	Yes	Yes	Yes	No	Yes	No	No
Numbers of Lines of Symmetry	One	One	Two	Zero	Many	Zero	Zero
Rotational Symmetry	No	No	Yes	Yes	Yes	Yes	Yes

Order of ration not Symmetry	Does not have	Does not have	Two	Two	Infinite	Two	Two
---------------------------------	---------------------	---------------------	-----	-----	----------	-----	-----

3. (i) 4 (ii) 3 (iii) 3 (iv) 4 (v) 2 (vi) 4 (vii) 5 (viii) 6

Chapter-15 Visualising Solid Shapes

Exercise = 15.1

(ii), (iv), (vi) 1. 2. (i), (iii) (i) $2 \rightarrow 4$ (ii) $1 \rightarrow 4 \quad 3 \rightarrow 5 \quad 2 \rightarrow 6$ 3. $3 \rightarrow 5 \quad 1 \rightarrow 6$ (iii) $1 \rightarrow 3 \quad 2 \rightarrow 5 \quad 4 \rightarrow 6$ 4. No **5.** (i) 6, 4, 4 (ii) 10, 6, 6 (iii) 8, 5, 5 (iv) 12, 7, 7 (ii) 6. (i) 1 1 2 3 5 2 4 3 6 4 6 Exercise = 15.2 1. Do your self **2.** Do your self 3. Do your self 4. Do your self Exercise = 15.3 1. (i) 30 (ii) 36 (iii) 30 2. (i) 9 (ii) 36 3. (i) 3 (ii) 7, 4. 4. Solids Horizontal Vertical

	Solids	vertical	Homzontal
(i)	Brick	Rectangle	Square
(ii)	Apple	Heart Shake	Circle
(iii)	Die	Square	Square
(iv)	Glass	Rectangle	Circle
(v)	Cone	Triangle	Circle
(vi)	Lunch Box	Rectangle	Rectangle
(vii)	Ball	Circle	Circle
(vii)	Match Box	Rectangle	Rectangle

Chapter-16 Mensuration

Exercise = 16.1

1

- 3. The length of a plot $= 50 \,\mathrm{m}$ The breadth of a plot = 30 mPerimeter of the plot = length × breadth = $50 \text{ m} \times 30 \text{ m} = 1500 \text{ m}^2$ The cost of fencing rate = 1000 per meter The cost of $1500 \text{ m plot} = 1500 \times 1000 = 15,00,000$
- The perimeter of a rectangle = 2(l+b)4.
 - $= 2 (12 \text{ cm} + 5.5 \text{ cm}) = 2 \times 17.5 = 35 \text{ cm}^2$
- 5. The perimeter of rectangular sheet = 100 cmThe length of it = 35 cmThe breadth = 100 = 2 (35 + b), 500 = 35 + b $h = 50 - 35 = 15 \,\mathrm{cm}$
- 9. (i) perimeter = 10 + 10 + 10 + 10 + 10 = 50 cm

- (ii) perimeter = 25 cm + 5 cm + 10 cm + 6 cm + 10 cm + 15 cm = 71 cm
- (iii) perimeter = 70 cm + 50 cm + 60 cm + 30 cm = 210 cm
- 10. (i) perimeter of the figure = $2 \text{ cm} + 4 \text{ cm} + 2 \text{ cm} + 4 \text{ cm} + 2 \text{ cm} + 4 \text{ cm} = 18 \text{ cm}^2$
 - (ii) $2 \text{ cm} + 5 \text{ cm} + 1 \text{ cm} + 7 \text{ cm} + 3 \text{ cm} = 18 \text{ cm}^2$
 - (iii) 25 cm + 20 m + 40 m + 35 m + 70 m = 190 m
 - (iv), (v) and (vi) do your self.

Exercise = 16.2

- 1. (i) Area of rectangle = length × breadth = $22 \cdot 5 \text{ m} \times 16 \text{ m} = 360 \text{ m}^2$
 - (ii) Area of rectangle = length × breadth = $11 \cdot 5 \text{ m} \times 8 \text{ m} = 11 \cdot 5 \times 0 \cdot 8 = 9 \cdot 2 \text{ m}$
- 2. Do your self
- 3. Diagonal of the square = $\sqrt[7]{2}$ cm

$$\Rightarrow \text{side } \sqrt{2} = \sqrt[7]{2} \text{cm}$$
$$\text{side} = \frac{\sqrt[7]{2}}{\sqrt{2}} = 7 \text{ cm}$$

Area of the square = $(side)^2 = (7)^2 = 49 \text{ cm}^2$

4. The area of a field = length \times breadth = 240 m \times 1100 = 26400 m²

:. one hector = 10000 m^2 The area in hector = $\frac{26400}{10000} = 2.64 \text{ m}$

5. Perimeter of a square park = $4 \times \text{ side} = 360 \text{ m}$

So, the side of squar park = $\frac{360}{4} = 90$

The area of square park = $(side)^2 = (90)^2 = 90 \times 90 = 8100 \text{ m}^2$

- 6. The area of rectangular plot = 440 m^2 The length of the rectangular plot = 22 mThe breadth of the rectangle = $\frac{440}{22} = 20$ The perimeter of rectangular park = 2(1+b)
 - $= 2 (20+22) = 2 \times 42 = 84 \text{ m}$
- 7. as similar as 6. so, do your self.
- 8. Do your self 9. Do your self 10. Do your self

Exercise = 16.3

Do your self

Exercise = 16.4

Do your self

Exercise = 16.5

Do your self

Exercise = 16.6

Do your self.

Chapter-17 Data Handling

Exercise = 17.1

1.	Mean runs $(\overline{X}) = \frac{\text{Total runs}}{\text{Total players}} = \frac{47 + 50 + 60 + 59 + 70 + 68}{6} = \frac{354}{6} = 59$						
2.	(i) The ten natural numbers = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10						
	The mean $(\overline{X}) = \frac{\text{total numbers}}{\text{number of observation}}$						
	-1+2+3+4+5+6+7+8+9+10-55-5.5						
	$=\frac{1+2+3+4+5+6+7+8+9+10}{10}=\frac{55}{10}=5\cdot5$						
	(ii) First eight odd numbers = 1, 3, 5, 7, 9, 11, 13, 15						
	Mean = $\frac{1+3+5+7+9+11+13+15}{8} = \frac{64}{8} = 8$						
	(iii) First six prime numbers = 2, 3, 5, 7, 11, 13 2+3+5+7+11+13 = 41						
	Mean = $\frac{2+3+5+7+11+13}{6} = \frac{41}{6} = 6 \cdot 83$						
3.	(i) highest = 95, lowest = 39,						
	(ii) Range = $95 - 39 = 56$						
	(iii) Mean = $\frac{85+76+90+84+39+48+59+95+81+75}{10} = \frac{732}{10} = 73.2$						
4.	(i) Range = Highest - lowest = $20 \cdot 5 - 0 = 20 \cdot 5$						
	(ii) Mean = $\frac{0 \cdot 0 + 12 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 20 \cdot 5 + 5 \cdot 3 + 1 \cdot 0}{7} = \frac{41 \cdot 1}{7} = 5 \cdot 87$						
	7 + 9 + 6 + r + 5						
	(iii) five days 5. the mean $=\frac{7+9+6+x+5}{5}=8$						
	The value of $x = 5 \times 8 = 40 = 7 + 9 + 6 + 5 = 27$						
	= 40 - 27 = 13, x = 13						
6.	The mean of 10 number = 20						
	So the numbers = $\frac{20+20+20+20+20+20+20+20+20+20}{10} = \frac{200}{10} = 20$,						
	10 10 10 10 $15+15+15+15+15+15+15+15+15$ 150						
	So, the new mean = $\frac{15+15+15+15+15+15+15+15+15+15}{10} = \frac{150}{10} = 15$						
7.	The mean of 6 boys = 48 kg						
	The individual weights of five = 51 kg, 45 kg, 49 kg, 46 kg and 44 kg						
	The weight of sixth boy = $\frac{51+45+49+46+44+x}{6}$						
	0						
	$=\frac{235+x}{6}=48, \therefore 6\times 48=288$						
	and $= 288 - 235 = 53$						
	So, the sixth boy weight = 53 kg .						
	(58)						

8. The mean of five numbers = 28The excluded = 28 + 5 + 2 + 1 = 369., 10., 11., 12., 13. Do your self

Exercise = 17.2

- 1 The score of ten matches= 2, 3, 5, 4, 0, 1, 3, 3, 3, 4 Arrange in ascending order = 0, 1, 2, 3, 3, 3, 3, 4, 4, 5 The n = 10 (even) so Median = $\left(\frac{n}{2}\right)^{th} = \left(\frac{10}{2}\right)^{th} 5th = 3$
- Weight of 11 students = 42, 52, 48, 52, 55, 58, 53, 54, 46, 49, 57
 Arranging the given data in ascending order 42, 46, 48, 49, 52, 52, 53, 54, 55, 57, 58
 Here n = 11, which is add

$$\therefore \text{ Median} = \left(\frac{n+1}{2}\right)^{th} = \left(\frac{11+1}{2}\right)^{th} = \left(\frac{12}{2}\right)^{th} = 6^{th}$$

So, Median = 52

3. Do your self.

Arranging in ascending order 14, 14, 14, 14, 17, 17, 18, 25, 25, 28 14 occurs most frequently (4 times) So, the mode is 14, (ii) Do your self 5.

5. Size No. of Shirt

DIZC	110.010
38	24
39	31
40	23
42	14
44	17

6. Arrange the data in ascending order

So, the mode is 2.

- 7. Do yourself
- 8. Do yourself

Exercise = 17.3

Do your self

Exercise = 17.4

1. (i) certain to happen (iii) Impossible

- (ii) can happen but not certain
- (iv) can happen but bot certain

(59)

	(v)	can happen b	ut not certain	(vi)	can happen b	out not certain
	(viii)	can happen b	ut not certain	(viii)	Impossible	
2.	(i)	$\frac{3}{11}$	(ii)	$\frac{2}{11}$	(i	ii) $\frac{1}{11}$
4.	(i)	$\frac{59}{100}$	(ii)	$\frac{41}{100}$		
5.	(i)	$\frac{21}{50}$	(ii)	$\frac{29}{50}$		
6.	6					
7.	(i)	$\frac{1}{6}$ (ii)	$\frac{1}{2}$ (iii)	$\frac{1}{2}$ (iv)	$\frac{1}{3}$ (v	$) \frac{2}{3}$
8.	(i)	$\frac{1}{15}$	(ii)	$\frac{14}{15}$		
9.	(i)	$\frac{21}{100}$	(ii)	$\frac{11}{20}$	(i	ii) $\frac{6}{25}$